Измерение эффективности службы доставки логистической компании DHL Express

Дипломная работа
Содержание скрыть

Эффективность — то понятие, которые мы слышим буквально отовсюду: от менеджеров, инженеров, финансистов и даже спортсменов. Тем не менее, для каждого из них этот термин означает что-то свое: кто-то оценивает эффективность вложений по определенным критериям, кто-то эффективность работы электроприбора, следя за тем, чтобы он не потреблял больше электрического тока, чем ему требуется для стабильной работы, а кто-то даже пытается повысить свою личную эффективность путем ежедневных практик. Все эти проявления эффективности только на первый взгляд кажутся различными из-за области приложения, однако существует единый фундаментальный принцип, который лежит в основе любого измерения эффективности — желание использовать как можно меньшее количество ресурсов для достижения как можно большей полезности, как в краткосрочной, так и в долгосрочной перспективе (отсюда и разделение понятий в английском языке: effectiveness — результативность инициативы, efficiency — продуктивность за единицу времени).

Таким образом, эффективность — это норма современного бизнеса, который вынужден действовать как в условиях ограниченности ресурсов, так и в жесткой конкурентной борьбе. Кто работает более эффективно — тот не только более стабилен к внешним изменениям, но и очевидно привносит большую пользу в окружающую среду.

В данной прикладной работе предметом изучения является измерение эффективности. Рассмотрено одно из проявлений этого феномена — измерение эффективности службы доставки в логистической компании, где оптимизация процессов, то есть их самое эффективное исполнение, есть главный залог успеха и стабильности работы предприятия. Как было отмечено, акцент исследования делается непосредственно на измерении эффективности, то есть на применении тех методов, которые позволяют получить количественные оценки и уже по ним судить о том, может ли предприятие, либо отдел функционировать еще лучше с разных точек зрения. Таким образом, предметная область исследования данной работы — наиболее подходящее измерение эффективности в логистической компании, результаты которого будут доступны для трактовки менеджерами компании.

Актуальность работы подтверждается тем, что по мнению многих исследователей, в том числе Yee и Tan (2004), Rao (2006) и Takala (2006), на данный момент логистические компании не применяют универсальных и объективных методов оценки эффективности. Также в поддержку этого мнения свидетельствует тот факт, что менеджеры Петербургского офиса международной компании DHL не смогли привести ни одного аргумента в пользу того, что их компания доставляет грузы наиболее эффективным способом. То есть, на практике зачастую не происходит никакой внутренней оценки эффективности логистической цепочки, кроме как по финансовым метрикам. Ключевым показателем для любой логистической компании является своевременная доставка, при сохранении приемлемого уровня издержек. Следовательно, разработка предложений по совершенствованию системы доставки представляется очень важной темой для работы.

13 стр., 6054 слов

Логистические посредники в транспортировке

... логистического посредника. К функциям международных транспортно-экспедиторских компаний относятся: Квотирование грузовых отправок. Бронирование места на транспортном ... эффективности цепей поставок фирм и удовлетворение потребностей конечных потребителей. 1.2 Цели и функции логистических посредников посредник логистический ... товара экспедитор обеспечивает все виды работ по приему груза от перевозчика ...

Главной темой работы является измерение эффективности службы доставки логистической компании. Для применения выбранного метода была выбрана компания DHL, для которой решалась проблема измерения эффективности курьерской службы. Эту компанию можно по праву назвать пионером качественной и своевременной доставки любых видов грузов, в первую очередь малогабаритных. Гипотеза автора состоит в том, что имеются резервы повышения эффективности службы доставки DHL. Итак, целью данной работы можно назвать создание рекомендаций для повышения эффективности службы доставки логистической компании.

Для достижения обозначенной цели, автором были поставлены следующие задачи:

  • Изучить особенности измерения эффективности различными методами;
  • Выявить наиболее пригодный для логистической компании метод измерения эффективности;
  • Применить выбранный метод для оценки эффективности службы доставки;
  • Дать рекомендации по повышению эффективности службы доставки.

Работа состоит из двух глав. Первая глава — теоретическая, освещает обзор тематических статей по теме эффективности и методов ее измерения, а также сложности в применении распространенных методов измерения эффективности. В конце главы выделяется наиболее подходящий метод оценки эффективности для логистических компаний — анализ свертки данных (DEA).

Вторая глава — эмпирическая, содержит описание процесса измерения эффективности на данных кейс компании. В результате применения выбранного метода, анализа свертки данных, проводится измерение эффективности службы доставки в Санкт-Петербургском отделении международного оператора грузоперевозок — компании DHL и даются рекомендации по ее повышению.

Методология исследования представлена в Приложении 7.

Глава 1. Концепция измерения эффективности

Первая глава текущей работы представляет собой обзор литературы на тему эффективности и ее измерения. Главной задачей этой части исследования является всестороннее рассмотрение такого феномена, как измерение эффективности в целом, а также непосредственно эффективности деятельности предприятий. Далее, акцент сдвигается на логистические компании, раскрывая особенности измерения эффективности отдельных бизнес процессов и компаний в целом. Результатом этой главы можно считать подбор наиболее подходящего метода для измерения эффективности службы доставки компании, которая выбрана в качестве примера.

1.1 Измерение эффективности деятельности предприятий

На современном рынке встречаются совершенно разные организации. Их можно классифицировать по размеру оборота, численности персонала, типу организационной структуры, наконец, по отрасли, в которой они задействованы. Большинство этих организаций стремится прогрессировать, то есть работать завтра лучше, чем сегодня, таким образом, они стремятся повысить свою эффективность. Данный пункт первой главы раскрывает сущность понятия эффективность, дает понимание особенностей ее измерения и отвечает на вопрос о том, есть ли принципиальные различия в измерении и управлении эффективностью для различных типов предприятий.

14 стр., 6877 слов

Экономическая эффективность внешнеторговой деятельности предприятия ...

... операций, необходимо стремиться к максимально эффективному ведению внешнеторговой деятельности. Для этого следует учитывать факторы, влияющие на эффективность внешнеторговой деятельности. ... Понятие внешнеторговой деятельности предприятия. Факторы, влияющие на ее эффективность и методы измерения ее эффективности Процесс ... зарубежных партнеров; возможные проблемы с доставкой и хранением товара из-за ...

1.1.1 Определение эффективности

Каждый из нас может дать тривиальное определение эффективности — насколько «хорошо» мы что-то делаем. Но с точки зрения современной науки, равно как и философии, понятие «хорошо» — весьма относительное. Для домохозяина покраска стен своего жилища за неделю является вполне хорошим показателем, чего не скажешь о тех же показателях для маляра высокого разряда. Этот пример с легкостью подтверждает, что эффективность — понятие все-таки относительное, то есть нужен определенный набор критериев, по которым можно судить об эффективности той или иной деятельности.

В самом простом случае мы судим по тому, как можно было сделать что-то (в нашем примере покраску дома) с минимальными затратами. Причем затраты здесь могут быть, как временные, так и денежные, главное, чтобы они все были приведены к одним единицам измерения. Логично предположить, что чем выше отношение нашей актуальной стоимости покраски к минимально возможной, тем выше эффективность.

Efficiency = Minimal cost / Actual cost (1.1)

Вполне вероятно, что в соответствии с формулой (1.1) и при высокой стоимости своего личного рабочего времени, покраску стен дома разумнее делегировать профессиональному маляру, поскольку, хотя его час работы и стоит дороже, он сделает это быстрее, равно, как и затратит меньше краски, не вынудит что-то докрашивать через пару лет и прочее.

Маляр экономично использует ресурсы — краску и время, тем самым работает эффективно. На таком просто примере можно раскрыть понятие эффективности в смысле экономичности деятельности (efficiency) и расширить его вплоть до многомерных случаев и использования при анализе производственной деятельности крупного предприятия.

Говоря о предприятиях и их операциях, Peter Bogetoft (2012), рассматривает другую сторону эффективности — effectiveness, то есть результативность. По его мнению, она больше связана не с тем, как мы экономично используем ресурсы в какой-то операции, а с тем, достигаем ли мы поставленных целей при данных нам ресурсах. Эту же точку зрения в своих определениях термина effectiveness подтверждают такие авторитетные словари, как Оксфордский и веб-словарь «Dictionary.com». С математической точки зрения, мы сравниваем текущее (актуальное) положение дел в виде функции полезности (U), с тем, какой она могла бы быть при лучших раскладах, то есть когда мы полностью добились поставленного результата(формула 1.2).

Efectiveness = Actual Performance / Best Possible Performance = U (A) / U (Ideal) (1.2)

Также стоит отметить, что распространено понимание эффективности как продуктивности (productivity) деятельности организации. По мнению Ю.В. Федотова (2012), оно соответствует понятию экономичности в случае, когда речь идет о соотнесении получаемого результата к обеспечивающим его затратам со стороны организации.

55 стр., 27250 слов

Задачи транспортного обеспечение коммерческой деятельности

... в производственно-коммерческой цепи Таким образом, транспортное обеспечение является струк­турным составляющим предпринимательской деятельности. Выбор схемы и технологии ... совокупность стадий, действий и мероприя­тий по выявлению, определению, выбору и привлечению потре­бителей, рационализации ... От вы­бранного канала зависят скорость, время, эффективность движе­ния и качество поставки товара. Выбор ...

Подводя краткий итог, эффективность содержит в себе два взаимодополняющих аспекта — экономичность и результативность. Экономичность показывает то, как мы рационально используем ресурсы для достижения целей, а результативность — то, насколько мы достигли наших поставленных целей. Причем стоит отметить, что экономичность является необходимым, но не достаточным условием для результативности. (Bogetoft, 2012).

1.1.2 Эффективность на предприятиях Управление эффективностью деятельности предприятия

Не смотря на то, что управление эффективностью деятельности относительно новая концепция в области менеджмента, она занимает все более и более значимое место среди главенствующих факторов развития любого предприятия. Также, по мнению Ю.В. Федотова, повышение эффективности является одним из основных конкурентных преимуществ на рынке.

По словам Ю.В. Федотова (2015) в работах по управлению эффективностью деятельности исходным моментом обычно является анализ понятия «эффективность деятельности». Дать точное определение этому понятию по праву считается сложной задачей среди исследователей по причине того, что каждая организация ставит перед собой цели самых разных порядков, причем зачастую они могут быть и противоречивы, как, например, увеличить долю рынка и одновременно минимизировать общие затраты (Hall, 1991).

Какие-то компании определяют цели в финансовых показателях (как уровень прибыли), а какие-то в качественных (уровень удовлетворенности клиентов).

То есть, если компания с одной стороны действует эффективно (результативно) и увеличивает прибыль в этот год, но при этом теряет своих лояльных клиентов, это может обернуться значительным падением прибыли в последующие годы. Поэтому очень важным моментом является не только выбор адекватных мер для оценки эффективности деятельности, но и последующее управление эффективностью.

Ю.В. Федотов (2015) дает следующее определение — управление эффективностью деятельности включает в себя действия, посредством которых обеспечивается продуктивное и экономичное достижение установленных для организации целей. Также, по его словам, управление эффективностью деятельности относится, прежде всего, к эффективному ведению бизнеса, а это сводится к тому, чтобы «делать правильные вещи, во-первых, и делать вещи правильно — во-вторых».(1997) в свою очередь, давая определение эффективности деятельности организации, утверждает, что она определяется в терминах создаваемой ею с использованием имеющихся у нее производительных активов ценности, соотнесения ее с той ценностью, которую ожидают получить владельцы активов. Таким образом, если предприятие управляется эффективно, то владельцы активов получают максимальную отдачу от своих вложений, что согласуется с основной долгосрочной задачей управления организацией — идеей максимизации рыночной стоимости компании.

Как в свое время сказал Билл Хьюлетт, один из основателей компании HP: «Нельзя управлять тем, что невозможно измерить, но всего, что измеримо, можно достичь». Отсюда вытекает основная идея, которую впоследствии и развивает текущая работа — чтобы предприятие работало эффективно, то есть приносило максимальную ценность, необходимо правильно измерять эффективность. Поэтому, основная задача следующего пункта — резюмировать основные подходы к измерению эффективности предприятий.

44 стр., 21565 слов

Оценка рыночной стоимости складского помещения, расположенного ...

... Оценка рыночной стоимости складского помещения, расположенного в районе средней отдаленности, для залогового обеспечения. Главная задача - научится применять на практике знания, полученные в процессе обучения. Основными этапами данной работы ... стоимости объекта оценки. 4. Обоснование основных выводов и результатов 1. Правовые основы недвижимости и оценочной деятельности рыночный стоимость ...

1.1.3 Измерение эффективности на предприятиях Определение термина «измерение эффективности»

Приведем пару распространенных определений измерения эффективности деятельности предприятия. В своей популярной книге «Измерение эффективности бизнеса: теория и практика» (2002) Энди Нили отмечал, что измерение эффективности- это процесс количественного описания экономичности и результативности действия, которое является составным элементом деятельности рассматриваемой единицы. Ключевым моментом здесь является квантификация — количественное описание, которое предполагает как определенные методы описания, так и выбор адекватных мер. Что касается последних, China, Punb и Lauc (2003) хорошо сформировали задачу, указав, что меры эффективности должны быть чем-то большим, нежели просто финансовые показатели деятельности и служить драйвером повышения эффективности деятельности в таких нефинансовых измерениях как качество, удовлетворенность потребителя, инновации и занимаемая доля рынка.

Относительно методов, Ю.В. Федотов (2015) отметил, что измерение эффективности (performance measurement) основное внимание уделяет измерению того, что произошло, не задаваясь вопросами «почему» или «как», что характерно для оценки деятельности (performance evaluation).

Значит, чтобы измерить эффективность, достаточно количественно описать фактические данные, не выдвигая каких-либо качественных оценок причинам таких результатов деятельности и не распространяя их на дальнейшие рассуждения о необходимых изменениях, что является областью других предметов — оценки деятельности и бенчмаркинга. Стоит при этом отметить, что сами данные могут быть как качественные (удовлетворенность клиента), так и количественные (затраты ресурса).

Здесь для удобства можно прибегнуть к терминологии Chow, Heaver и Henriksson (1994), разделив все переменные на «твердые» и «мягкие» — количественные и качественные соответственно.

С учетом всего вышесказанного, измерение эффективности являет собой некоторый количественный «отпечаток» или «образ» текущей деятельности. Для более разумной трактовки измерений, а впоследствии и более взвешенных выводов, в первую очередь нужно выбрать правильные меры (метрики) для отпечатка, то есть те «координаты», в которых он будет изображен. Они должны соответствовать стратегическим целям организации и не конфликтовать друг с другом. Во-вторых, нужно позаботиться о правильном методе измерения, что подробнее будет рассмотрено в следующем подпункте.

Методы и системы измерения эффективности

В связи с тем, что оценка эффективности является соотношением “выходов” (outputs) к “входам” (inputs) (Буссофиане А., 1991), для измерения эффективности необходимо, чтобы входы и выходы имели числовые значения. На основании этого, логично предположить как лучше всего можно измерить эффективность самого простого процесса, где есть лишь одна переменная входа и одна переменная выхода: следует только вычислить отношение результата процесса (выхода) к входному параметру. В дополнение к этому, существует возможность сопоставления эффективности двух процессов, при условии, что они существуют в гомогенной среде и характеристики параметров входа и выхода совпадают (Sarkis, 2002).

Таким образом, если взять, например, двух рабочих-асфальтоукладчиков, а единственными параметрами входа и выхода их работы будут мощность машины и площадь уложенного асфальта, то оценить их эффективность и провести сравнительную характеристику не представляется сложной задачей. Впрочем для того, чтобы приблизить пример к реальной жизни, нужно понимать, что важными параметрами входа также являются количество топлива, потребленного каждым, качество сырья и материалов, а выхода — качество асфальта и скорость выполнения работы. На практике, стоит разобраться с тем, насколько эффективны рабочие не только по сравнению друг с другом, но и на множестве других значений, то есть, среди всех рабочих в городе.

Для решения трудностей, связанных со значительным количеством входных и выходных параметров, которые оказались несостоятельными при парном сравнении, стоит попробовать провести сравнение между взвешенными суммами выходов и входов. Однако сразу же возникает вопрос о том, как же учесть данные весовые коэффициенты. Логичным, на первый взгляд, решением было бы вычислить экспертным мнением одинаковую размерность весовых коэффициентов для каждого работника, но абсолютно непонятно как обосновать этот выбор. Становится ясно, что при указанном эвристическом методе подбор весовых коэффициентов будет далек от оптимального, и некоторые курьеры могут оказаться в изначально неравных условиях. В случае если рассчитывать весовые коэффициенты для всех работников по отдельности, то вся процедура еще сильнее затруднится и вряд ли будет более наглядным. Помимо этого, стоит помнить о том, что при использовании эвристических методов может появится субъективизм, так как в данном случае значительную роль играет человеческий фактор, который может нивелировать все усилия по получению объективного результата и возможен даже исход, при котором будут получены некорректные результаты, которые впоследствии будут неправильно истолкованы, что негативно отразится на принятии управленческих решений, которые не смогут повысить эффективность организационных единиц.

Системы измерения эффективности деятельности организации основаны на сборе данных о:

  • Затратах ресурсов (Inputs) — человеческие, финансовые и материальные ресурсы, используемые в ходе деятельности организации
  • действиях (Activities) — использование ресурсов для выполнения поставленных задач;
  • Результатах (Outputs) — краткосрочные последствия, проистекающие из действий по выполнению поставленных задач;
  • Итогах (Outcomes) — среднесрочные изменения, порождаемые получением результатов;
  • Последствиях (Impacts) — долгосрочные изменения, порождаемые во времени достижением установленных в качестве цели результатов и их итогов.

Рисунок 1 — Методы оценки эффективности (Источник: Федотов, 2012)

Деятельность организации: идеальное измерение эффективности

  • Немногочисленность используемых метрик
  • Предсказуемость финансовых результатов на основе нефинансовых метрик деятельности фирмы
  • Сквозной характер применяемых метрик
  • Стабильность набора метрик во времени
  • Привязка метрик к системе вознаграждения сотрудников

1.2 Эффективность и ее измерение в логистике

1.2.1 Определение термина логистика

На первом Европейском конгрессе по логистике, проходившем в Берлине в 1974 году, было сформулировано определение логистики, как учения о планировании, управлении и контроле движения материальных, информационных и финансовых ресурсов в различных системах.

Например, Gunasekaran (2003) дает такое полное определение: логистика объединяет все материальные и информационные потоки через организации; она включает весь процесс движения продукта или услуги, начиная с управления входящими материалами, производством, хранением готовой продукции, а затем ее доставкой и даже послепродажным обслуживанием.

Как видно из определений, приведенных выше, логистика есть не что иное, как процесс рационального управления материальными и информационными потоками.

1.2.2 Сложности измерения эффективности логистической цепочки

Обычно логистическая цепочка представляется, как серия раздельных и последовательных бизнес процессов. По словам Stewart (1997), традиционная цепочка доставок обычно зависела от производителей в первую очередь, поскольку они контролировали скорость с которой производятся и распределяются товары. Поэтому измерять эффективность не составляло труда, ведь если выручка от продажи сильно перекрывала операционные затраты на производство и дистрибуцию, то такую цепь поставок можно было считать вполне эффективной, поскольку она доставляла товары и окупала все затраты.

В последние годы прошлого века появились новые тренды в измерении эффективности, в том числе из-за того, что покупатели стали более требовательными и вынудили производителей быстрее принимать и доставлять заказы, что естественно затруднило измерение эффективности, поскольку появились такие нефинансовые метрики, как быстрота доставки и число вовремя доставленных товаров (Stewart, 1997).

Такие измерения к тому же осложнены влиянием производственных мощностей и прочими операционными ограничениями. В виду увеличения количества и типов метрик измерения эффективности в логистической цепочке, не все компании нашли возможность по-новому оценивать свою деятельность. Yee и Tan (2004), Rao (2006) и Takala (2006) в своих работах подтверждают взгляды о том, что логистике требуются новые инструменты оценки эффективности, причем более комплексные и изощренные. Те инструменты, которые не просто дадут количественные оценки, но позволят менеджерам их легко трактовать для принятия взвешенных стратегических решений.

1.2.3 Традиционные методы измерения эффективности в логистике

Как широко известно, инструменты для измерения эффективности логистической цепочки привлекли внимание множества исследователей. В своей статье Seiford (1996) резюмирует все исследования на эту тему. Также он отмечает, что среди самых первых и популярных инструментов — диаграммы «паук» или «радар» (рис. 2), а также Z-чарт. Эти инструменты основаны на gap-анализе, и они по своей природе являются графическими. Не смотря на то, что такие представления в основном легки для интерпретации, в случае многомерных и осложненных ситуаций это становится практически невозможным. Другими словами, если в рассматриваемой модели много входов и выходов, то измерять эффективность становится неимоверно трудно.

Рисунок 2 — Пример использования «паук» или «радар»

Другим распространенным методом измерения эффективности является вычисление отношений (ratios).

Чаще всего измеряют отношения выходов ко входам ресурсных потоков организации, например, прибыли к затратам, количеством доставленных вовремя товаров к количеству потраченного бензина и прочие. Что сразу бросается в глаза, если в модели оценки эффективности много входных и выходных параметров, то набор полученных в итоге показателей тяжело использовать при принятии какого-либо решения, так как они могут быть взаимосвязаны между собой или конфликтовать (см. 1.1.2).

Для многих исследователей становится очевидно, что задача оценки эффективности логистической цепочки (supply chain) должна решаться с помощью многомерного подхода (Helo, 2005; Wagner и др., 2002).

1.3 Измерение эффективности логистической компании

1.3.1 Обоснование выбора и характеристик метода оценки

Отношения одиночных выходов ко входам, как например рентабельность продаж и инвестиций, очевидно, не могут давать объективной и комплексной оценки эффективности всей логистической цепочки. Таким образом, те традиционные инструменты, которые упоминались в предыдущей главе, не годятся для измерения эффективности службы доставки. Многие авторы, среди которых и Zhu (2000) уточняют, что объективный метод оценки эффективности логистической цепи может быть основан только на мультифакторной модели, которую применяют и для оценки эффективности деятельности всей компании. Разработка такой мультифакторной модели, которая отражала бы эффективность как отдельных функциональных центров, так и технологий, внедренных в логистическую цепочку, могла бы показать насколько можно либо увеличить значения выходных переменных, увеличив эффективность операций, либо насколько можно сократить используемые ресурсы, достигая текущего уровня эффективности.

Одним из методов, на которых может базироваться упомянутая модель, можно по праву назвать анализ свертки данных — DEA (Data Envelopment Analysis).

Этот метод измерения эффективности получил широкое применение в различных отраслях и для решения широкого класса задач. Например, Bell и Morey (1995) использовали DEA в целях бенчмаркинга, для поиска более экономичных решений, Barrand Seiford (1994) в финансовой и банковской индустрии, а Ампилогов (2012) для оценки риска банкротства предприятий. Метод анализа свертки данных также зарекомендовал себя, как средство решения внутренних проблем компании в плане увеличения эффективности (Humphreys и др.,2005).

В дополнение, Rickards (2003) также показал важность использования DEA для внутренней оценки сбалансированной системы показателей, тем самым расширив методологию Balanced Scorecard. Dey и Ogunlana (2004), а также Baccarini (2004) отмечали, что DEA с легкостью может использоваться в проектном менеджменте для выбора лучших альтернатив.

В основе метода DEA лежит такой эмпирический стандарт совершенства, как эффективная граница, что упрощает трактовку результатов в отличие от методов анализа показателей и им подобных. Таким образом, метод предоставит результаты, которые могут быть использованы менеджерами при принятии решений. Farrell (1957) в своей знаменитой статье подтверждает, что эффективная граница может легко использоваться для сравнения эффективности деятельности двух компаний. Отличительной чертой метода DEA является его универсальность, одним из проявлений которой является возможность многомерного анализа, а также отсутствие необходимости ручного подбора численных весовых коэффициентов, что позволяет нивелировать предвзятость при их выборе, а также минимизировать влияние человеческого фактора.

Подводя итог, обширное использование метода во внутреннем и внешнем бенчмаркинге в последние годы показывает возможность использования этого метода, как инструмента для измерения эффективности, ведь бенчмаркинг, грубо говоря, и «вырос» из принципов измерения эффективности. Таким образом, можно заключить, что DEA является одним из самых подходящих методов для объективной оценки эффективности службы доставки как основного элемента логистической цепочки исследуемой компании.

1.3.2 Краткое описание метода анализа свертки данных

Метод DEA впервые был описан Charnes и Cooper в 1978 как методология, базирующаяся на принципах линейного программирования. Их модель, CCR, названная по имени создателей, использовалась в основном для определения того, насколько компания эффективно (экономично) выполняет свои операции по сравнению с другими. В основе метода лежит анализ эффективности юнитов, принимающих решения (DMU), в роли которых могут быть любые объекты, эффективность которых нужно оценить. Как пример, это могут быть отделения сети магазинов, отдельные должностные лица, либо даже просто маршруты курьеров службы доставки.

Для каждого из исследуемых объектов находится показатель эффективности, лежащий в пределах от 0 до 1. Единица соответствует максимальной результативности, и те объекты, которые имеют такую оценку, являются эффективными, то есть лежат на границе эффективности. Объекты, которые не являются эффективными, лежат внутри границы, построенной на координатной плоскости (вход; выход).

В случае присутствия в модели большого количества входов и выходов (рис. 3), граница имеет форму поверхности, причем может быть аналитически описана в многомерном пространстве размерностью, равной произведению количества входов на выходы. Таким образом, эффективная граница как бы обтекает исследуемые объекты, отсюда и альтернативное название метода — оболочки данных (envelopment- обертывание).

Рисунок 3 — Концептуальная схема метода анализа свертки данных для 4 объектов (составлено автором на основе Ампилогов, 2012)

Нахождение эффективности каждого объекта осуществляется с помощью процедур линейного программирования, а именно задачи максимизации или минимизации целевой функции, в зависимости от того, направлена модель на вход или на выход, два основных типа классификации. Целевая функция представлена через векторы выхода (входа), где аргументом выступают выходные (входные) данные из матрицы исследуемого объекта. Если его выход или вход нельзя представить в виде линейной комбинации выходов (входов) других объектов (DMU), то он является эффективным, так как в пространстве вход-выход недостижим ни одним из других DMU, то есть эффективная граница будет проходить через его координаты, оставив другие близкие юниты позади. Также в зависимости от того влияет ли масштаб деятельности объектов на усиленный рост их эффективности, принято выделять модели с постоянной и переменной отдачей от масштаба.

1.3.2 Постановка задачи для анализа свертки данных

Задача нахождения максимума или минимума целевой функции является классической задачей линейного программирования. Напомним, что линейное программирование — подкласс математических задач на поиск экстремумов в многомерных векторных пространствах, задаваемых системами линейных уравнений (Кормен и др., 2006).

В данном случае, для исследователя ставится задача поиска максимума эффективности (формула 1.3) при определенных ограничениях, указывающих на то, что отношение справа должно быть меньше единицы (1.4) , чтобы компания давала больше, чем потребляет, а сами виртуальные множители u, v (El-Mahgary, 1995) должны быть сколь угодны малыми и положительными (1.5), чтобы составить линейную комбинацию наблюдаемого объекта.

(1.3)

Решение данной задачи было предложено Charnes, Coopers, Rhodes (1978), которые в своей модели, позже названной CCR, рассчитали показатели эффективности путем поиска весовых коэффициентов, дающих максимальную эффективность (1.3) при упомянутых ограничениях. Описание данных можно увидеть в Таблице 2. Таким образом, весовые коэффициенты существуют на обширном множестве, ограниченном лишь положительностью. Это накладывает некоторые ограничения на использование модели с точки зрения наличия большого количества решений, удовлетворяющих условию (1.4) и (1.5).

По этой причине модель может быть улучшена добавлением ограничения на виртуальные множители. Таким образом, автоматически нивелируется главный недостаток модели CCR- предпосылка о том, что выход растет пропорционально входу для исследуемых объектов, то есть нет эффекта экономии на масштабе. Такая предпосылка ограничивала использование метода для реальных производственных предприятий.

Таблица 2. Описание входящих в модель CCRпоказателей.

количественное значение переменной «выхода» r, наблюдаемое у DMUj
количественное значение переменной «входа» i, наблюдаемое у DMUj
весовые коэффициенты переменных входа и выхода
n количество рассматриваемых DMU
m количество переменных входа
s количество переменных выхода

Данная проблема была решена Banker, Charnes, Cooper (1984), которые предложили сперва представить задачу не в дробном виде, как в случае (1.3), а линейном (1.6), а затем ввести новое и очень важное условие — выпуклости, ограничивающее единицей сумму виртуальных множителей для исследуемого объекта (1.9).

Такой подход позволяет учесть тот факт, что объекты не могут выходить за границы производственных возможностей без изменения масштаба производства, таким образом, будут получены не только относительно “лучшие” объекты из выборки, но так же и рекомендации по изменению их показателей для того, чтобы приблизиться к эффективным без смены масштаба предприятия.

(1.6)

(1.7)

(1.8)

(1.9)

1.3.3 Выбор ориентации DEA модели

В литературе по тематике анализа свертки данных можно найти много вариаций модели DEA. Тем не менее, главные различия обуславливаются либо учетом отдачи от масштаба, как было описано в предыдущем пункте, либо выбором ориентации самой модели оболочечного анализа. Выбор условия между минимизацией входа (1.6) и максимизацией выхода (1.10) являются основанием для двух альтернатив — модели, ориентированной на вход и модели, ориентированной на выход.

(1.10)

На практике, выбор ориентации модели зависит от того, на какие переменные может влиять исследуемая организация. Очевидно, что в большинстве случаев исследуемые предприятия имеют влияние на входы, то есть могут ограничить количество ресурсов, которое поступает, скажем, каждому из отделений, добившись от них их более эффективного использования. С другой стороны, может стоять задача получения конкретных результатов, скажем заданного уровня производства, здесь уже требуется минимизации использованных ресурсов. Стоит упомянуть, что если организации имеют возможность влиять и на входные параметры, и на выходные, то в таком случаем может быть использована, так называемая, базовая модель.

Для более наглядного примера, обратимся к рисунку 4, где на плоскости вход-выход изображен исследуемый объект D, причем он лежит внутри границы эффективности. В различных типах ориентации, ему будут соответствовать различные эффективные виртуальные образы, то есть те объекты, которыми мог стать D, если бы либо сократил входные параметры, сместившись в точку I (input), или же увеличил выходные, сместившись в точку О (output).

Точке В (base) соответствует эффективный образ по базовой модели, где возможна корректировка как выхода, так и входа.

Рисунок 4 — Три ориентации модели DEA (источник: Tutorial in DEA by Ryerson University, 2016)

1.3.4 Выбор входных и выходных параметров

Как упоминалось ранее, Буссофиане (1991) определил оценку эффективности, как численное соотношение выходов ко входам, то есть по его логике входы и выходы должны иметь числовую характеристику. Если же модель подразумевает какие-то качественные переменные, то для них нужно определить соответствующие числовые метрики.

Выбор входных и выходных переменных в модели оболочечного анализа является ключевым этапом. Во-первых, с математической точки зрения метод использует стандартные процедуры поиска экстремума на заданном пространстве, которое как раз и задается этими переменными. Их количество определяет размерность пространства, а числовые метрики — расположение границы эффективности в этом пространстве. Таким образом, важность переменных в этой модели очевидна. Во-вторых, в виду того, что метод DEA является непараметрическим, то есть не требует определенных параметров от используемого массива данных (нормального распределения и т.п.) и делает возможность выбора переменных значительно шире, это же и накладывает определенные ограничения на полученные результаты, так как очевидно, что нельзя оценить, значимы ли они статистически. Таким образом, с одной стороны метод позволяет выбирать самый широкий круг показателей для входных и выходных параметров, но в то же время не дает гарантий, что результат окажется достоверным. Например, исследуемые объекты могут получить показатель эффективности равный единице, хотя это не будет отражать качество их реального трудового процесса сразу по нескольким причинам. Например, метод рассматривает выходные переменные, как равные по значимости, то есть сэкономить денежную единицу для него практически то же самое, что сэкономить литр топлива, хотя это совершенно неравнозначные ситуации. Это лишний раз подтверждает мысли о том, что перед использованием метода, нужно привести данные в соответствующий вид, о чем будет рассказано в следующем подпункте.

Рекомендации для выбора переменных

Как было отмечено в предыдущем абзаце, главное условие достоверных результатов анализа свертки данных достигается выбором правильного множества входящих переменных, адекватно «соединяющих» входы модели с ее выходами. Имеется в виду, что для построения качественной модели измерения необходимо, во-первых, подобрать объективные показатели, а затем уже иметь их наиболее точные измерения.

Чтобы выбранные показатели оказались объективными, то есть дали достоверные результаты, стоит в первую очередь сформулировать вербальную постановку задачи, привязанную к конкретной решаемой проблеме, а затем уже подобрать тот набор переменных, по которому можно будет судить о решении поставленной задачи. Относительно решения класса задач оценки эффективности логистической компании стоит отметить, что распространенные метрики также, как выручка курьера и затраты на его работу будут оценивать только финансовый аспект деятельности, но не учитывать таких качественных показателей, как лояльность клиентов, репутация и прочее. Этот момент касается в принципе любых компаний, делающих упор на качестве предоставляемых услуг или товаров.

По мнению экспертов, модель DEA должна иметь как можно меньшую размерность, то есть количество входов и выходов должно стремиться к минимуму. Это связано, прежде всего, с тем, что многомерное пространство дает больше вариаций для расположения границы эффективности и, можно сказать, занижает требования для организационных единиц в терминах эффективности. Таким образом, схожие по типу или сильно коррелирующие переменные можно агрегировать в один вход. Очевидно, что параметры входа должны быть независимы друг от друга, чтобы их взаимная корреляция не искажала результаты, определяя эффективные юниты слишком часто.

1.3.5 Положительные и отрицательные стороны DEA

DEA — это инструмент, который предлагает понятные и легкие для трактовки результаты по измерению производительности организационной единицы и его можно применить в компаниях, которые осуществляют деятельность в абсолютно различных сферах: финансовых, промышленных, логистических и так далее. Именно в силу столь широкой применимости, стоит обозначить три главных и очень важных особенности данного метода:

  • Он сопоставляет каждой организационной единице одно значение, которое характеризует эффективность этой единицы.
  • Сопоставляя неэффективные единицы с портфелем эффективных, метод указывает на потенциальные направления развития для неэффективных единиц.
  • Упрощает подведение итогов о работе организационных единиц.

Чарнс (1994) дополняет данный перечень достоинств описанного метода:

  • Предоставление возможности использования несколько входных и выходных параметров, которые выражены в разных единицах измерений (ясно, что входы/выходы одной группы должны быть выражены в одинаковых единицах).

— Метод фокусируется на границе производственных возможностей, а не на одном центральном объекте, который является образцом для всех единиц. Каждая DMU может сопоставляться как с одной эффективной единицей, так и с несколькими, и это позволяет точно определить причины неэффективности изучаемой единицы, которая не принадлежит границе производственных возможностей.

  • Отсутствие ограничений на вид выражения входных и выходных параметров.

Несмотря на это, метод DEA в стандартном виде имеет ряд характерных недостатков. Отдельные свойства модели, которые делают ее таким удобным инструментом измерения, в одно и то же время могут являться источниками некоторых проблем и ограничений. Специалисту, который использует данный метод, стоит обязательно учитывать эти проблемы.

— Так как DEA проводит сравнение множества единиц одновременно, одна ошибка, небольшое отклонение, может привести к некорректному результату для всей модели, даже при условии, что допущенная ошибка является симметричной и нивелируется какой-то другой ошибкой.

— Обобщенная формулировка модели генерирует ряд задач линейного программирования, специальных для каждой организационной единицы. В случае с достаточно большой выборкой, задача может быть слишком ресурсозатратной и невыполнимой с помощью стандартного программного обеспечения.

Athanasspoulis (1991) определяет ряд других проблем в применении модели:

  • Сложность агрегирования различных сторон деятельности организационной единицы, при условии, что она осуществляет несколько разных функций, а не одну.
  • Отсутствие чувствительности к нематериальным и качественным компонентам.

1.3.6 Применение метода DEA

Подводя промежуточные итоги, становится понятно, что сравнение эффективности работы разных организационных единиц и подразделений является одним из основных и наиболее рациональных применений метода и всех входящих в него моделей. Количественная оценка эффективности, которую можно получить по результатам расчетов, не только дает ответ на вопрос эффективен ли тот или иной юнит, но и показывает отставание одних единиц от других. Таким образом выходит, что модель предлагает возможное направление для работы компании по оптимизации процессов той или иной организационной единицы.

Помимо этого, стоит упомянуть о потенциальных направлениях использования модели DEA:

  • Использование групп эталонных единиц,
  • Определение эффективных механизмов деятельности,
  • Целеполагание,
  • Определение эффективных стратегий,
  • Мониторинг измерений эффективности во времени,
  • Распределение ресурсов.

Самый интересный пункт из данной работы — использование групп эталонных единиц, так как в изучаемой далее отрасли функционирует большое число разных компаний и условия, в которых они работают, относительно гомогенны. Несмотря на это, результаты их деятельности весьма разнятся. В то же время, DEA, как инструмент бенчмаркинга, дает возможность определить лучшие практики. Проведя дополнительный анализ, специалист может идентифицировать, какие конкретно внутренние и внешние факторы привели к такому итоговому результату. Кроме этого, DEA может очень точно определить те компании, которые являются отстающими на рынке по показателю эффективности и после проведения анализа контекста, в котором существует изучаемая DMU, предлагает ответ на вопрос о том, с чем же связана столь низкая производительность.

При наличии большого количества данных, релевантных по отношению к решаемой задачи, стоит воспользоваться другими направлениями метода, которые, при правильном использовании, могут дать ясную картину относительно деятельности тех или иных бизнес или организационных единиц. Однако в представленной работе эти направления нельзя было использовать в связи с ограниченностью доступа к информации.

1.3.7 Разработка аналитической модели для применения метода DEA в оценке логистической компании

После того, как метод DEA был разносторонне изучен наряду со спецификой оценки эффективности логистических компаний, была разработана аналитическая модель, позволяющая использовать метод для оценки эффективности логистических компаний наиболее универсальным образом (Рисунок 5).

Рисунок 5. Аналитическая модель применения метода DEA для логистической компании

Модель предполагает более разумное применение метода свертки данных. На первом этапе осуществляется вербальная постановка задачи, которая ведет к рациональному выбору переменных, что является важнейшим пунктом. Далее осуществляется выбор ориентации модели, откуда вытекает постановка задачи в математической форме. В конечном счете, обрабатываются результаты и проводится оценка достоверности результатов. В случае необходимости, процедура повторяется с другими параметрами для сопоставления результатов.

Глава 2. Измерение эффективности службы доставки DHL Express

В данной части работы описывается применение метода DEA, выбранного по итогам предыдущего теоретического исследования. Во второй главе будут представлены характеристики компании DHL и обоснование необходимости применения метода свертки данных для оценки деятельности организации. Метод DEA может быть использован только при правильном выборе входных и выходных параметров, поэтому данному вопросу уделено особое внимание. В рамках исследовательской работы были представлены полученные результаты и их трактование. Стоит упомянуть о том, что сам по себе метод DEA на практике часто используется для бенчмаркинга, поэтому на основании вычислений были даны практические рекомендации по оптимизации некоторых процессов в компании DHL Express.

2.1 Описание исследуемой компании

2.1.1 Краткая история компании и положение на рынке

DHL — это международная компания, основанная в Германии, она является ведущей компанией мирового рынка логистических услуг. Она была основана в 1969 году с целью осуществления транспортировки документов между Сан-Франциско и Гонолулу, но впоследствии компания стала работать во всем мире. На данный момент она входит в Группы компании Deutsche Post DHL. Головной офис находится в Бонне, Германия.

DHL Express перевозит срочные отправления в более чем 120 000 городов в 220 странах и регионах. В активе компании более 5000 офисов и около 76 000 машин для осуществления своей деятельности. Под брендом DHL работают четыре дочерние компании:

  • DHL Supply Chain — менеджмент цепей поставок;
  • DHL Global mail — почтовые услуги
  • DHL Global Forwarding — авиаперевозки, морской фрахт, а также мульти модальные перевозки;
  • DHL Freight — сухопутные перевозки

В компании работает порядка 275 000 человек (данные за 2011 год).

DHL открыла представительство в России в 1984 году. На момент 2015 года, компания доставляет грузы в 900 населенных пунктов страны. Есть 150 собственных и агентских офисов; а транспортный парк представлен 900 единицами техники. Помимо этого, компания является зарегистрированным таможенным брокером.

Главный офис DHL в России находится в Москве, там же расположен один из центральных сортировочных центров компании в России.

1.2 Описание бизнес-процессов компании

Специфика отрасли, в которой рассматриваемая компания является лидером, накладывает отпечаток на бизнес-процессы, происходящие в компании. DHL экспресс отличает от конкурентов то, что ее приоритетом является, прежде всего, желание клиента и сохранность груза. Основным требованием клиентов чаще всего выступает высокая скорость доставки.

Все процессы в компании связаны с соблюдением трех основных принципов:

  • Своевременность доставки

Конкуренция на рынке экспресс-доставки постоянно усиливается, в Санкт-Петербурге представлено множество компаний, которые готовы выполнить заказ с минимально низкой маржой, для того, чтобы завоевать клиентов. По направлению Санкт-Петербург — Москва ежедневно курсирует несколько тысяч фур, которые перевозят посылки и обещают доставку на следующий день. Однако, доставить груз во Владивосток в течение 4 дней смогут далеко не все компании. Это связано, прежде всего, с тем, что такая обеспеченность транспортными ресурсами, как у DHL экспресс, не доступна другим поставщикам данных услуг.

  • Доставка с первого раза

Причины, по которым на базы DHL возвращается недоставленная корреспонденция, чаще всего заключаются в том, что была допущена неточность или ошибка при заполнении накладных во время приема заказа курьером или специалистом сервисного центра. Впоследствии курьер, который доставляет корреспонденцию приезжает, но не обнаруживает нужного адреса. Для того, чтобы все-таки выполнить доставку, курьеру необходимо принять дополнительные действия (связаться с клиентом по указанному контакту или же вернуть посылку обратно на базу в отдел недоставленной корреспонденции).

Именно таких «дополнительных действий» компания старается избегать, так как они приносят дополнительные расходы и те 20-30 минут, которые курьер затрачивает на то, чтобы изначально добраться до указанного адреса и те усилия, которые потом приходится прикладывать сотрудникам недоставленной корреспонденции в результате дают необоснованные затраты. Для того, чтобы подобное не случалось в работе курьеров, менеджер наземных операций выясняет, где и по чьей вине была допущена ошибка при изначальном оформлении заказа и впоследствии данная проблема устраняется.

  • Принцип «Я могу» для всех без исключения сотрудников

То, что отличает компанию DHL от конкурентов, помимо высокой скорости доставки, — это индивидуальный подход к каждому клиенту. Часто в компанию обращаются клиенты с особо сложными заказами, которые не всегда возможно исполнить. К примеру, в конце рабочего дня приходит человек, которому требуется срочно доставить посылку на завтрашний день. Если это происходит после того, как вечерний рейс в распределительный центр в Лейпциге уже улетел, то выполнить данный заказ практически невозможно. Несмотря на это, оператор сервисного центра, в который обратились с подобной просьбой, должен сделать все возможное или подыскать другой способ развития событий, который удовлетворил бы заказчика.

Описание технологического процесса доставки грузов

Сам технологический процесс в компании выглядит следующим образом. У Санкт-Петербургского подразделения существуют две базы, на которых происходят процессы сортировки, проверки и отправки грузов. Первая, LED, является основной, поскольку сюда доставляют все международные отправления из аэропорта, находится на Пулковском шоссе. Здесь находится весь терминал и администрация. Вторая, RVH, находится на Севере города в Левашово. Площадь города разделена на две зоны покрытия, за каждую из которых отвечает та или иная база (Рисунок 6).

Рисунок 6 — Зоны покрытия двумя сортировочными базами DHL (составлено автором)

Все отправления привозятся на первичную сортировку на южную базу. С разных рейсов отправления объединены специальными пломбами, которые указывают на какую базу предназначен тот или иной пакет. В машину, которая забирает пакеты из аэропорта, пакеты укладывают таким образом, чтобы в багажном отделении в самом конце лежали транзитные грузы (к примеру, пакет на Петрозаводск будет лежать рядом с водителем, так как база LED является для него транзитом и его разгрузка не является первоочередной задачей), затем посередине лежат пакеты, предназначенные на данную базу, а ближе всего к крышке багажника грузовой машины лежат пакеты на северную базу. Такая организация работы позволяет в первую очередь перенаправить пакеты на RVH на нужную базу, а лишь затем разбираться с пакетами на LED. Эта самая первая сортировка происходит на терминале около ворот, где сразу же после нее сверяют номера на пломбах и в списке, который есть у менеджера по наземным операциям. Этот процесс не автоматизирован и состоит в том, что водитель называет вслух номер пломбы, а менеджер ставит отметки в своем листе, что достаточно сильно тормозит работу терминала. Если все пакеты прибыли из аэропорта, то начинается их вскрытие и расфасовка. Грузы разделяют на два вида: документы в плоских конвертах и все остальное. Большие грузы направляются в свою зону для обработки, а документы — в другую.

У каждого курьера существует свой географический маршрут, который имеет свою цифру. Около ворот, где разгружают пакеты, есть специальные ящики с соответствующими номерами, и менеджер по наземным операциям смотрит на адрес, указанный в накладной и распределяет корреспонденцию по маршрутам. В этом процессе участвуют и курьеры, которые тоже раскладывают по ящикам. Но часто случается так, что курьеры не знают той или иной улицы и поэтому они обращаются с данным вопросом к менеджеру наземных операций, который лучше всех знает все районы и даже маленькие улицы. Если бы данный процесс был автоматизирован, то времени на него уходило бы значительно меньше.

После этого процесса все разделенные по маршрутам конверты отправляют на досмотр и повторное взвешивание, где уже находятся габаритные грузы. Там все посылки проходят через принтер, а затем специалист по обработке грузов использует 3D весы, которые определяют объемный вес (до этого при оплате отправления у клиента, курьер замеряет все эти показатели (ширина, высота, длина, вес), но на терминале это все происходит по второму разу. После того, как все посылки и корреспонденция проходят процедуру просвечивания в рентген-аппарате, из специального прозрачного вынимают из накладные и сортируют их. Это необходимо делать, так как есть накладные двух типов: рукописные и «коннект» (у клиента установлена программа DHL connect, при помощи которой он создает эти накладные в электронном виде).

В данной программе клиент сохраняет свой адрес (отправителя) и в последующих случаях ему приходится менять лишь адрес получателя. Рукописные же состоят из 4 копий. Одна копия уходит с отправкой, вторая остается в DHL как оригинал (с подписью отправителя, она хранится 5 лет), третья остается у клиента и еще одна копия сдается в кассу вместе с деньгами (если отправка осуществляется за наличный расчет).

Рисунок 7- Логистическая цепочка DHL в Санкт-Петербурге (составлено автором)

До реорганизации и оптимизации в компании, рукописные накладные вручную вводились во всех офисах компании. Сейчас все накладные отправляются в московский офис компании. Существуют определенные правила обработки грузов. Отправки с кодом продукта 7 идут от сервис-десков (service desk- пункты обслуживания клиентов, которые находятся в разных точках города и откуда затем забираются посылки), они не досматриваются курьерами, досмотр осуществляется на рентген аппарате на терминале, после этого в систему с помощью сканера вводится чек-поинт (check-point-единое обозначение для различных этапов, через которые проходит любое отправление и которое отображается в системе отслеживания для клиентов), что груз досмотрен.

Жизненный цикл отправки состоит из этих чек-поинтов. В системе можно увидеть, как груз движется, какие с ним были осуществлены действия и где он находится в данный момент времени. Часто случается, что нужная посылка не соответствует номеру накладной. Это означало, что в системе нет связи между внутренним номером посылки и накладной, а все посылки типа docs должны сканироваться по накладной. Есть также два типа рукописных накладных: полностью рукописные и «препринт» (клиент заказывает такие накладные, если он делает очень много отправок, услуга платная, ею пользуются крупные компании), их сортируют в разные стопки для сканирования, так как принтер распознает их по-разному. Эти данные должны быть в системе до 17:25, когда улетает самолет на экспорт в Лейпциг (грузы категории international).

Грузы категории domestic уходит в течение дня, в 15:00 и в 19 часов, объем перевозок больше по данной категории. По накладным типа «connect», данные уже находятся в системе, поэтому агенту нет необходимости перепечатывать все вручную. Исключение составляет ситуации во время отправки, когда лист уже распечатан, если клиент вспоминает, что ему необходим дополнительный тариф или упаковка. В этом случае курьер от руки дописывает необходимую информацию. Если номер счета исправлен, то появляется SE 1, SE 2 и SE 3 — отметка о том, что груз надо обрабатывать определенным образом, так как он имеет высокую ценность или стоимость (микросхемы).

У таких грузов существует дополнительная пломба и стяжка. В подобных случаях сканировать нужно отдельной партией и заносить отдельно в систему. Есть биллинговая система, она выставляет счет не за каждую отправку, а консолидировано за всю неделю по счету.

После повторного взвешивания и контроля, посылки консолидируются и определяются к соответствующему курьеру. Курьеры выезжают по собственному графику. Утренние курьеры развозят те посылки, которые прилетели с международного рейса прошлым вечером и одновременно собирают у клиентов корреспонденцию для последующего отправления. На терминале LED работают также супервайзеры (которые являются непосредственными начальниками курьеров), которые подвозят посылки на заранее установленное место, где они встречаются с теми курьерами, которые с утра находятся на маршруте. Такие курьеры называются фидерами. Их задачей является сокращать потерю времени курьеров во время того, как им приходится, после развозки всех утренних посылок, возвращаться на базу для получения послеполуденных посылок. К 13:00 4 фидера выезжают на точки в городе, местоположение которых рассчитано так, чтобы расстояние для этих точек для каждого курьера было примерно одинаковым. На данных точках курьеры отдают фидерам собранные посылки и забирают полученную за время их отсутствия новую корреспонденцию для дальнейшей развозки. После того, как вся корреспонденция на выдачу привезена по адресу и по всем необходимым точкам собрана корреспонденция на отправку, курьер возвращается с посылками на базу. Там происходит вечерний досмотр, повторное взвешивание и расфасовка грузов для того, чтобы с утра их сразу забрали утренние курьеры.

2.2 Вербальная постановка задачи применения метода DEA для оценки эффективности службы доставки

В данной работе речь идет о логистической компании, которая позиционирует себя, как высоконадежный поставщик курьерских услуг. После анализа особенностей бизнес-процессов компании, можно отметить, что как и во многих логистических компаниях, в DHL отдают особое место качеству предоставляемых услуг. В виду названных приоритетов, для компании важно поддерживать на должном уровне несколько ключевых показателей, характеризующих, как высокое качество услуг, так и надежность (Таблица 3).

В первую очередь, это быстрота доставки, то есть выдерживание заявленных сроков. Во-вторых, доставка груза должна осуществляться при любых обстоятельствах, чтобы клиент был спокоен насчет того, доставят ли груз и будет ли он в сохранности. Очевидно, что на этот критерий влияют и такие внешние факторы, как те же географические и погодные условия, но, тем не менее, важную роль здесь будет играть отлаженность бизнес процессов.

Таблица 3. Данные для вербальной формулировки задачи (собственный источник)

Стратегические приоритеты Меры Влияющие факторы
Качество
  • Высокий уровень сервиса
  • Своевременная доставка
  • Доступная цена
  • Квалификация персонала
  • Загруженность курьеров
  • Затраты на доставку
Надежность
  • Доставка при любых условиях
  • Сохранность груза
  • Доступное для доставки время
  • География доставки
  • Эффективность бизнес-процессов
  • Внешние факторы (погода)

Если обратиться к пункту 2.1, то становится очевидным, что самая высокая неопределенность в бизнес-процессах DHL возникает в момент покидания посылкой сортировочной базы (Рисунок 6).

После этого момента, весь груз ответственности за своевременность доставки и сохранность посылки лежит именно на курьере. По этой причине выглядит логичным оценить методом DEA эффективность именно курьерской службы. Если будут выявлены неэффективные единицы, то руководство может направить действия на повышение эффективности каждой такой организационной единицы, тем самым увеличив в целом эффективность курьерской службы (курьеры действуют независимо, то есть эффекта синергии не наблюдается), а затем и всей логистической цепочки. Таким образом, вербальная постановка задачи измерения эффективности логистической компании DHL методом DEA выглядит следующим образом:

“Измерить эффективность курьерской службы подразделения DHL Express Петербург методом анализа свертки данных”

Отсюда вытекают следующие важные моменты: во-первых, область оценки эффективности сузилась до курьерской службы, то есть в роли исследуемых объектов (DMU) выступают курьеры, а во-вторых, появилось пространство переменных, в котором можно строить эффективную границу, поскольку оно связано с операционной эффективностью деятельности курьеров.

Таким образом, следующий этап применения метода — выбор входных и выходных параметров в модели, которые определят многомерное пространство измерения эффективности.

2.1 Выбор переменных, описывающих входы и выходы

Как было доказано в главе 1, этап выбора переменных для оболочечного анализа является ключевым по причине сильной зависимости качества модели от входных параметров. Причем речь здесь идет не сколько о точности измерений или определенном распределении исходных данных, что было бы важно в случае использования параметрических методов, а скорее о связи между выбранными переменными и общей эффективностью организации.

Стоит сразу отметить, что для выбора входных и выходных параметров требуются различные подходы. Для получения более достоверных результатов, имеет смысл находить те выходные параметры, которые сильно коррелированы с эффективностью организации, скажем, высокой рентабельностью ее капитала и высокой лояльностью клиентов, либо просто увязываются со стратегическими целями компании. Это направление может стать основой для отдельного исследования, скажем формирование выборки компаний, которые являются эффективными с точки зрения метода DEA и нахождения взаимосвязи между их различными показателями (ratios).

В данном случае является очевидным, что выходные переменные должны отражать тот набор факторов, который влияет на качество и надежность услуг. С учетом информации пункта 1.3.4 и абзаца выше, был предложен следующий набор выходных параметров (Таблица 4).

Таблица 4. Набор данных для модели (составлено автором)

Узел Переменная Название
ВХОД Количество доставок до 13:00 before
Количество доставок после 13:00 after
ВЫХОД Количество доставленных вовремя посылок Intime
Количество посылок, не доставленных с первого раза postponed
Расстояние, покрытое курьером distance

Выходные параметры модели

Говоря о выходных параметрах, в первую очередь стоит отметить, что высокое количество доставленных вовремя посылок очевидно увеличивает лояльность клиентов и подтверждает высокое качество предоставляемых услуг. Отсюда ясно, что этот показатель вполне может считаться объективно отражающим эффективность всей курьерской службы.

Высокое количество недоставленных с первого раза (отложенных) посылок является прямым признаком низкой эффективности работы компании и потери лояльности клиентов, влекущей и снижение доли рынка. Таким образом, можно сказать, что этот показатель отражает нежелательную переменную (undesired), то есть эффективность будет достигаться при его уменьшении. Для того, чтобы решить эту проблему, существует обширное число методов, но мы будем использовать самый распространенный — мин-максную нормировку (формула 2.1), которая позволит привести данные в подходящий вид (приложение 1).

(2.1)

Такой же логики придерживается и параметр расстояния, покрываемого курьером для доставки определенного количества. Логично предположить, что чем меньше курьер проезжает, тем меньше он тратит топлива, амортизирует автомобили, а следовательно, сильнее сокращает затраты компании. Таким образом, этот показатель тоже требует нормирования по формуле (2.1).

Входные параметры модели

Для подбора подходящих входных параметров скорее важна оценка того, какие переменные сильнее всего оказывают влияние на выходы модели. В данном случае, стоит сразу же построить логическую связь между безошибочной доставкой грузов вовремя и теми ресурсами, которыми располагают исследуемые единицы для достижения упомянутого. Сразу же возникает вопрос о наличии таких данных, что подробнее рассмотрено в конце подпункта. Забегая вперед, стоит сказать, что выбор входных параметров ограничился теми измерениями, которые присутствовали в информационных системах компании. Как оказалось, самыми подходящими стали: количество доставок, осуществленных курьером. Этот параметр напрямую связан с количеством доставленных и недоставленных грузов, так как с ростом числа доставок растет и количество недоставленных и доставленных вовремя. Единственный нюанс состоит в том, что исходя из особенностей логистической цепочки (см. 2.1.1), курьеры часто получают заказы, доставленные с опозданием, либо прибывшие во второй половине дня. Таким образом, вероятность их отложенной доставки возрастает и дает преимущество в эффективности тем, кто получает «поздних» заказов меньше. Для цели избавления от влияния этого фактора было предложено разбить весь объем посылок на две переменных — полученные до 13:00 и полученные после этого времени. Весь набор входящих и выходящих параметров с именами переменных в модели может быть оценен в Таблице 4.

В конце, стоит отметить о некоторых сложностях, с которыми может столкнуться аналитик при выборе переменных для модели свертки данных. Во-первых, даже если удастся сузить область измерения эффективности до комфортных размеров, где казалось бы все взаимосвязи легко обозримы, отнюдь не факт, что компания будет располагать измерениями необходимых данных. Поэтому важным наблюдением, вытекающим из исследования является добавление этапа «Оценка пространства измеримых показателей» в последовательность применения метода DEA для оценки эффективности, причем не только логистических компаний. На данном этапе аналитику стоит составить картину тех данных, которые хранятся в организации, либо которые можно теоретически получить из различных документов или записей в информационных системах. Это облегчит дальнейшие рассуждения, так как, в конечном счете, придется исходить из тех параметров, которые можно измерить и получить.

2.2 Выбор ориентации и отдачи от масштаба для модели

Масштаб

Если говорить об отдаче с масштаба, то есть существует ли эффект экономии на масштабе, то наиболее реалистичной ситуацией естественно будет выглядеть переменная отдача (VRS — variable return to scale).

При таком выборе ориентации, чем больше у курьера посылок, тем меньше ему понадобится времени, чтобы развести их по адресам, чем, если бы он развозил каждую посылку, получая ее отдельности или малыми группами. Учитывая особенности процесса доставки, очевидно, что чем больше курьер получает посылок единовременно, тем меньше в совокупности он потратит времени и расстояния за счет возможности комбинировать. В дополнение к этому, можно представить случай, когда развести 10 посылок и 20 может являться совершенно разными ситуациями, поскольку часто курьеры приезжают в бизнес-центр и раздают там сразу 20 посылок за полчаса, но для того, чтобы раздать 10 посылок курьеру порой приходится ездить по городу целый день.

Как видно, все зависит от географии доставки. Компания не обладает статистикой такого рода информации, поэтому каждая посылка может быть случайным образом ассигнована курьеру, если она входит в его зону, и курьер может получить от нескольких таких посылок за день, до несколько десятков. Тем не менее, в компании есть некий внутренний принцип деления курьеров на зоны, который подразумевает приблизительно одинаковые расстояния. Таким образом, в виду неопределенности процесса, и для получения более точных результатов, принято решение посчитать двумя методами — BCC и CCR, учитывающими и не учитывающими эффект экономии на масштабе.

Ориентация

После того, как были выбраны подходящие входы и выходы в модели, а их соотношение оказалось 2:3, становится задача выбора ориентации модели. Как было отмечено в предыдущей главе, бывают модели, ориентированные на вход или на выход в зависимости от того, на какой из узлов компания имеет влияние. Если же влияние может быть оказано, как на входные, так и на выходные параметры, то логичнее использовать, так называемую, базовую модель. В рассматриваемом случае, входные переменные были следующие:

  • Количество доставок до 13:00,
  • Количество доставок после 13:00, очевидно, что компания может влиять на эти параметры сильнее, нежели на
  • Количество доставленных вовремя посылок,
  • Количество посылок, не доставленных с первого раза.

Таким образом, модель должна быть с одной стороны ориентирована на входы (input-oriented), так как компания в целях увеличения количества доставленных вовремя и с первого раза посылок, может давать курьерам меньше доставок после обеда (13:00), например, изменив бизнес-процесс распределения товаров. С другой стороны, компания может повлиять на выходную переменную

  • Расстояние, покрытое курьером,

Например, уменьшив расстояние, покрываемое курьером, за счет передела зон ответственности до меньшей площади, как вариант, с помощью приема на работу дополнительных курьеров. Все это говорит о том, что следует рассмотреть и ориентированную на выход модель.

Выводы по предварительному этапу эмпирического исследования

В ходе предварительной части исследования, были выбраны входные и выходные параметры модели таким образом, чтобы наиболее адекватно отображать стратегические цели компании (на выходе) и особенности бизнес процессов (на входе).

Для того чтобы получить более качественные результаты, было предложено применить несколько моделей DEA, в частности с постоянной и переменной отдачей от масштаба, а также ориентировать модель, как на вход, так и на выход, чтобы, как минимум, сравнить результаты и сделать соответствующие выводы.

2.3 Ход эмпирического исследования

2.3.1 Математическая постановка задачи

После того, как входы и выходы модели были определены наряду с типом ориентации и отдачи от масштаба, можно приступать к расчетам. Как было выбрано в предыдущем подпункте, модель является сначала ориентированной на вход, что формулирует математическую постановку задачи следующим образом по формулам (1.6-1.9)

Перед нами стоит задача минимизации входов модели, при фиксированных выходах. Выпуклость (учет переменного масштаба) достигается условием (1.9).

Таким образом, эффективности 1 будут соответствовать доминирующие элементы j, которые лежат на границе эффективности и не могут быть представлены в виде линейных комбинаций с коэффициентами других элементов.

Матрица входных и выходных параметров представлена в Приложении 1. Как видно, на входе подается двумерная матрица [Х 1 j,X2 j], а на выходе трехмерная [Y1 j,Y2 j, Y3 j], таким образом, граница эффективности будет строиться в (2х3=6)-мерном пространстве.

Вычисления производятся с помощью автоматизированной надстройки DEAдля Solverот Microsoft Excel, с выбором всех упомянутых параметров. Все рассматриваемые курьеры (DMU) поделены по принадлежности к базе — северной, RVH, или южной, LED. Южная база насчитывает 32 курьера, а северная — 48. Всего оценка была проведена для 80 курьеров.

3.2 Применение модели DEA с переменной отдачей от масштаба (BCC)

В первую очередь, в виду различий в географии зон покрытия курьеров, было принято решение оценить относительную эффективность внутри каждой из баз. Полные результаты можно найти в Приложении 2. Итак, для начала были произведены расчеты для южной базы. Исходные данные для анализа представлены в Приложении 1.

Южная база (LED)

После применения анализа свертки данных, оказалось, что более половины курьеров базы LED неэффективны (Таблица 5).

Среди них можно выделить несколько характерных групп. Первая — те, кто близки к лидерам, эффективным юнитам, при сокращении своих ресурсов, то есть совокупного количества посылок на 4% и менее процентов, но сохранив те же средние показатели на выходе (количество доставленных вовремя, отложенных и покрытое расстояние), могут стать эффективными. Следующей группе нужны сокращения до 10%, последующей до 17%, а группа отстающих требует сокращения ресурсов более, чем на четверть.

Таблица 5. Неэффективные курьеры среди 32 на базеLED

# Курьер Эффективность
1 Курьер 14 0.998678
2 Курьер 16 0.98887
3 Курьер 30 0.987467
4 Курьер 11 0.980284
5 Курьер 17 0.972402
6 Курьер 32 0.960232
7 Курьер 15 0.937373
8 Курьер 7 0.934083
9 Курьер 22 0.92098
10 Курьер 26 0.914603
11 Курьер 8 0.905226
12 Курьер 12 0.903819
13 Курьер 13 0.902388
14 Курьер 1 0.843335
15 Курьер 25 0.84054
16 Курьер 23 0.832217
17 Курьер 21 0.774856
18 Курьер 24 0.763942
19 Курьер 29 0.763262

После того, как стало ясно какие из курьеров неэффективны, то есть с точки зрения математики, они доминируемы другими курьерами, логично оценить возможные причины этому. Но для начала стоит проанализировать корреляционную матрицу всех переменных, входящих в модель (Таблица 6) для того, чтобы подтвердить разумность выбора параметров для модели.

Таблица 6. Корреляционная матрица для переменных базы LED

before After intime distance postponed
Before 1.00 0.63 0.66 -0.48 -0.44
After 0.63 1.00 0.34 -0.18 -0.04
Intime 0.66 0.34 1.00 -0.28 -0.46
distance -0.48 -0.18 -0.28 1.00 0.11
postponed -0.44 -0.04 -0.46 0.11 1.00

Как видно, основная доля посылок, представленная строкой before, имеет самую сильную корреляцию с параметром доставлено вовремя — intime и количеством доставок, что вполне логично. Но корреляция after с intime составляет всего 0.34, это говорит о том, что гипотеза о большей доставке вовремя именно утренней корреспонденции — верна. Те курьеры, кто имел больше доставок до обеда, в целом чаще доставляли их вовремя. Корреляция с distance представляется отрицательной во всех случаях, кроме как с postponed. То есть чем больше покрыто километров, тем меньше доставлено посылок вовремя. Возможно, это связано с тем, что курьеры, которые наезжают много километров, являются менее опытными, за счет чего и опаздывают к сдаче посылок вовремя. Как видно, самая большая по модулю корреляция (-0.48) между расстоянием, пройденным курьером и количеством посылок, полученных до обеда. Таким образом, взаимосвязь этих двух показателей достаточно сильна, чтобы отразить факт того, что до обеда, возможно, курьеры меньше стоят в пробках, либо получают специфические заказы на маленькие расстояния.

Далее, стоит вернуться к анализу причин неэффективности курьеров. Для разрешения этого вопроса стоит рассмотреть проекции каждого из курьеров к эффективной границе. Полный список проекций представлен в Приложении 3, а для наглядности выбрана группа самых отстающих курьеров и несколько лучших среди неэффективных.

Таблица 7. Проекции курьеров базы LED к эффективной границе

No. DMU I/O Score Data No. DMU I/O Score Data %
7 Курьер 7 0.93 21 Курьер 21 0.77
before 2481.00 -6.59% Before 2604.00 -22.51%
after 323.00 -6.59% After 417.00 -22.78%
intime 2360.00 0.00% Intime 2068.00 0.00%
distance 0.08 243.48% distance 0.68 21.59%
postponed 0.33 140.39% postponed 0.90 9.31%
15 Курьер 15 0.94 24 Курьер 24 0.76
before 2402.00 -6.26% Before 2842.00 -23.61%
after 313.00 -6.26% After 455.00 -26.34%
intime 2248.00 0.00% Intime 2225.00 0.00%
distance 0.52 0.00% distance 0.06 999.90%
postponed 0.75 0.00% postponed 0.39 96.49%
17 Курьер 17 0.97 29 Курьер 29 0.76
before 2683.00 -7.93% Before 2821.00 -23.67%
after 296.00 -2.76% After 367.00 -23.67%
intime 2406.00 0.00% Intime 2189.00 0.00%
distance 0.31 0.00% distance 0.15 224.17%
postponed 0.48 0.00% postponed 0.65 5.38%

Как показывает Таблица 7, самые неэффективные курьеры уступают эффективным сразу по всем пунктам. Имея в своем арсенале еще меньшее количество посылок (before/after), они умудряются проезжать больше километров и доставлять не вовремя еще большее количество посылок, чем эффективные. Также стоит отметить, что те курьеры, чья эффективность близка к 1, часто доминируемы по какому-либо из критериев, либо по двум сразу. Например, Курьер 17 доставил не меньшее число посылок вовремя, чем эффективный курьер, но, тем не менее, из числа посылок на 8% больше до обеда и 3% после обеда, очевидно, его процент доставленных вовремя гораздо меньше, чем у самого близкого эффективного курьера.

Северная база (RVH)

В Таблице 8 представлены результаты применения модели BCC-I для второй базы. Как демонстрируют расчеты, подавляющее большинство курьеров неэффективны, всего 8 из 48 курьеров могут быть названы эффективными. Забегая вперед, практически те же самые результаты были получены и при использовании модели, ориентированной на выход (BCC-0).

Логичным шагом выглядит необходимость узнать причину такой высокой неэффективности курьеров. Либо среди курьеров есть группа более опытных, которая не дает «новичкам» приблизиться к своим показателям, либо северный регион имеет сложную среду для доставки, например дорожные пробки. Если внимательно рассмотреть показатели эффективности, то можно заметить, что первые 5 курьеров, при сокращении потребления ресурсов менее, чем на 1% и при сохранении таких же результатов на выходе, станут эффективными. Таким образом, их можно считать квазиэффективными, и мысленно расширить процент эффективных курьеров до 27%. Тем не менее, менее одной трети — эффективны, это все равно довольно низкий показатель для службы доставки.

Таблица 8. Неэффективные курьеры среди 48 (от №33 до №80) на базе RVH

# Курьер Эффективность
1 Курьер 40 0.996481739
2 Курьер 65 0.996313811
3 Курьер 75 0.991566455
4 Курьер 34 0.990980184
5 Курьер 43 0.990860094
6 Курьер 68 0.987928856
7 Курьер 47 0.986819365
8 Курьер 33 0.97972973
9 Курьер 60 0.975214828
10 Курьер 73 0.960500828
11 Курьер 64 0.946026603
12 Курьер 44 0.942576918
13 Курьер 42 0.93656753
14 Курьер 77 0.93552606
15 Курьер 59 0.928538456
16 Курьер 56 0.922835103
17 Курьер 49 0.922446944
18 Курьер 57 0.922284899
19 Курьер 48 0.918956001
20 Курьер 41 0.902166912
21 Курьер 31 0.898447681
22 Курьер 61 0.894718789
23 Курьер 74 0.890873669
24 Курьер 58 0.890375705
25 Курьер 69 0.888842024
26 Курьер 71 0.887017866
27 Курьер 51 0.873483319
28 Курьер 55 0.865557404
29 Курьер 38 0.85506058
30 Курьер 52 0.849530401
31 Курьер 66 0.845805127
32 Курьер 78 0.844615237
33 Курьер 50 0.837016677
34 Курьер 39 0.832704837
35 Курьер 46 0.829002629
36 Курьер 63 0.813162557
37 Курьер 32 0.777030439
38 Курьер 54 0.76654783
39 Курьер 62 0.712279598

Как известно, метрики Фарелла, описанные в предыдущей подглаве, показывают те расстояния, преодолев которые вдоль луча производственных возможностей, неэффективные юниты могут стать эффективными. То есть, по сути, сократив, либо используемые ресурсы на входе, если модель ориентирована на вход, либо увеличив показатели на выходе из модели, если она ориентирована на выход, курьеры могут достичь показателей кого-либо из эффективных.

Если мы возьмем курьера, который является неэффективным, то ему для того, чтобы стать эффективным необходимо «двигаться» к границе производственных возможностей. Для него существует проекция, встав на которую, он смог бы быть эффективным. Это условная точка на границе производственных возможностей и является выпуклой комбинацией.

Рассматривая, частоту попадания эффективных курьеров в такие выпуклые линейные комбинации, представляющие неэффективных (Таблица 9), можно отметить следующее: на базе в Левашово существуют абсолютные лидеры, показывающие выдающиеся результаты. Курьеры № 72 и 39,47 имеют показатели, которых могут достичь 29 и 20,19 курьеров соответственно. Такая же ситуация и на базе LED, самый «опытный» курьер под номер 5, его показателей потенциально могут достигнуть 14 курьеров из 19 неэффективных.

Таблица 9. Частота попадания эффективных курьеров в линейные комбинации неэффективных

LED RVH ВМЕСТЕ
Курьер 2 1 Курьер 37 6 Курьер 2 0
Курьер 3 2 Курьер 38 0 Курьер 4 8
Курьер 4 10 Курьер 39 20 Курьер 5 50
Курьер 5 14 Курьер 47 19 Курьер 19 1
Курьер 6 1 Курьер 55 1 Курьер 20 3
Курьер 9 6 Курьер 69 12 Курьер 31 0
Курьер 10 9 Курьер 72 29 Курьер 37 0
Курьер 18 2 Курьер 74 5 Курьер 38 0
Курьер 19 6 Курьер 78 11 Курьер 39 12
Курьер 20 7 Курьер 47 42
Курьер 27 0 Курьер 55 12 2 Курьер 69 4
Курьер 31 0 Курьер 72 43
Курьер 74 14
Курьер 78 3

Также присутствуют и такие курьеры, которые эффективны только для себя, то есть другие юниты не могут достичь их показателей, таким образом, они находятся в удалении от общих результатов. Это неудовлетворительный результат по причине того, что такие курьеры могут быть «особенными», то есть с точки зрения статистики — выбросами, по различным причинам их показателей другие курьеры никак не могут достичь без выхода за границу производственных возможностей. С практической точки зрения, более важны те курьеры, которые как можно чаще встречаются в ЛК, так как они вполне достижимы и могут являться своего рода «reference point», лидерами своих отделов.

Расчеты по обеим базам

С учетом предположения о том, что география города (север и юг) не значительно влияет на расстояния, загруженность дорог и распределение посылок, мы объединили всех курьеров в общий пул из 80 DMU. Применение модели BCC-I, а затем BCC-0, дали схожие результаты, как и в случае отдельного расчета для баз (Приложение 3), что подтвердило отсутствие влияние направленности модели на эффективность курьеров.

Эффективными оказались всего 15 из 80 курьеров (Таблица 9) , то есть менее 19%. Только каждый 5 курьер эффективно доставляет посылки — результат неутешительный для компании. Напомним, что на базе LED около 40% курьеров эффективны, а на базе RVH около 17%, но с учетом квазиэффективных, их число доходит до 27%.

Как видно, при слиянии общих данных в один пул, более половины эффективных курьеров базы LED стали доминируемы курьерами из базы RVH. Только самый лучший представитель базы LED сохранил свое лидерство, став «примером» для 50 остальных курьеров. Что касается северной базы, все 9 курьеров остались эффективными и в общем пуле, что подтверждает предположение о том, что они являются «самыми опытными» не только на своей базе, но и в целом по компании. Неудивительно, что остальные курьеры базы RVH не могут работать также эффективно, им просто тяжело конкурировать с опытными.

Выводы

Расчеты по обеим базам при условии переменной отдачи от масштаба показали, что значительная часть курьеров на базе RVH работает неэффективно, причем выделяется группа лидеров, которые при агрегировании данных обеих баз, стали доминантными по отношению к нескольким, прежде эффективным курьерам базы LED. Таким образом, высокая неэффективность курьеров северной базы может быть объяснена сложностью конкуренции с самой опытной группой курьеров.

3.3 Применение модели DEA с постоянной отдачей от масштаба (CCR)

Изначальная предпосылка в расчетах методом BCC о том, что отдача от масштаба является переменной является не совсем точной в виду уже упомянутых причин. Для того, чтобы оценить влияние этого фактора, были проведены расчеты по модели CCR, освещенной в теоретической части работы. Итак, в Приложении 4 можно увидеть список всех неэффективных курьеров, полученных при применении метода с постоянной отдачей от масштаба для каждой из баз по отдельности. Как можно заметить (Таблица 10), на базе LED появились три неэффективных курьера дополнительно, столько же и на базе RVH. Не смотря на то, что в процентном соотношении, количество эффективных курьеров сильно упало, на базе RVHс 17% до 11%, а на базе LEDс 40% до 31%, отдача от масштаба не оказала сильного влияния на модель. Добавленные курьеры (27, 31, 18) являются по своей эффективности очень близки к 1 в виду того, что сокращение ресурсов на входе менее чем на 1%, даст им полную эффективность.

Таблица 10. Неэффективные курьеры, возникшие при расчете методом CCR-I.

LED CCR-I RVH CCR-I
Курьер 27 0.9998 Курьер38 0.991
Курьер 31 0.996 Курьер55 0.987
Курьер 18 0.988 Курьер 78 0.932

На второй базе тенденция сохраняется. Отсюда следует вывод, что отдача от масштаба не влияет на эффективность. Важный вывод, который опровергает предварительную гипотезу о том, что курьеры могут комбинировать посылки для достижения наибольшей эффективности. Как видно, основная причина неэффективности лежит не здесь.

2.4 Результаты эмпирического исследования

Использование модели свертки данных DEA позволило оценить качество работы завершающего звена технологического процесса компании — доставки корреспонденции. Полученные результаты отражают не абсолютную эффективность, а относительную, таким образом показывая, что при нынешних ресурсах и имеющихся данных, существуют курьеры, лучше которых внутри компании не работает никто. Они «не доминируются» другими курьерами, а значит, эффективны с технической точки зрения.

4.1 Результаты корреляционного анализа

Первым важным результатом стоит признать итоги корреляционного анализа, который подтвердил для одной базы предварительную гипотезу о том, что курьеры, имеющие больше доставок до обеда, в среднем чаще доставляют посылки вовремя, таким образом, являются более эффективными. Так, корреляционная матрица для базы LED (Приложение 4) показала зависимость посылок доставленных «до» и «после» 13:00 с количеством доставленных вовремя 0.64 и 0.36 соответственно. Но взаимная корреляция посылок «до» и «после» равнялась 0,78, показывая, что 78% всех посылок приходится на более раннее время. Значение 0,64 на пересечении переменных «доставленные вовремя» и «полученных до 13:00» указывает на то, что на базе LED время получения посылок курьером значительно влияет на качество итогового результата, но все же важным фактором являются личные умения курьера, как выбор маршрута или скорость передвижения по городу. Этот вывод подтверждает и тот факт, что многие эффективные курьеры имели большое число поздно полученных заказов, но все равно справлялись со своей задачей лучше остальных.

Для базы RVH выводы менее очевидные, так как корреляция доставленных вовремя посылок с «до» и «после» 13:00 практически совпадает (0.65 против 0.66), но это оставляет целых 34% на влияние других факторов, таких как личные навыки курьера.

Подводя итоги, на первой базе количество доставленных вовремя посылок сильнее зависит от числа полученных до обеда, чем на второй базе. Таким образом, на базе RVH эффективность курьеров будет определяться больше личными навыками курьеров, нежели распределением посылок до обеда и после. Отсюда вытекает предположение о том, что работники второй базы более опытные и могут нивелировать поздние посылки выбором оптимальных маршрутов, либо другими способами, основанными на своем опыте.

4.2 Результаты анализа эффективности курьеров

Анализ эффективности курьерских служб показал, что среди работников первой базы, LED, присутствует большая доля эффективных, чем на второй базе, RVH (Таблица 11).

На первый взгляд показалось, что работники северной базы менее эффективны, видимо, из-за особенностей региона города, который покрывают, либо атмосферы внутри коллектива, поскольку такой значительный разброс по сравнению с первой базой вряд ли можно объяснить иначе.

Таблица 11. Сравнение эффективности курьеров по базам (составлено автором)

База % эффективных курьеров
BCC CCR
RVH 17% 11%
LED 40% 31%
Вместе 19%

Тем не менее, после того, как все данные были помещены в общий пул и была рассчитана эффективность каждого курьера, независимо от принадлежности к базе, оказалось, что более половины курьеров базы LED стали доминируемы курьерами RVH, которые подтвердили свою эффективность не только среди своей базы, но и в целом по компании. Все же, единственным «рекордсменом» стал представитель базы LED под номером 5, который сохранил свое лидерство. Как видно из Таблицы 9, частота его попадания в ЛК, представляющие неэффективных курьеров — максимальна, причем в случае слияния данных в пул, она увеличилась до 50.

В связи с этим стоит отметить, что в логистических компаниях, как в прочем и во многих других часто происходит заимствование «лучших практик». Значимость полученных результатов подтверждается тем, что эти «лучшие практики» были найдены внутри самой компании, и с помощью данного метода удалось, например, сократить затраты на поиск подобных показателей у своих конкурентов. Частота появления в выпуклых комбинациях (Таблица 9) служит показателем того, как часто курьеры служили «образцом для подражания» для своих коллег. Курьеры, которые имеют наибольшее значение по данному показателю, позволяют, ориентируясь на них, выполнить внутренний бенчмаркинг. Таким образом, деятельность и навыки курьеров 5, 47 и 72 должны быть подробнее изучены менеджерами компании с целью выявления причин их высокой эффективности и создания ориентиров для других работников. А деятельность тех курьеров, которые выделены красным цветом в Таблице 9, должна быть тоже изучена, но для выявления причин их исключительной эффективности.

Таким образом, становится очевидным, что низкая эффективность северной базы определяется скорее не географическими особенностями, а высокими показателями определенной группы курьеров, формирующих эффективную границу. Остальные курьеры просто не могут соперничать с более опытными работниками, хотя их эффективность относительно близка к ним. Несмотря на то, что результаты в целом показали высокую долю неэффективных курьеров, стоит заметить, что минимальное значение данного показателя близко к 0.7 и демонстрирует, что в компании нет некомпетентных работников, все имеют потенциал к улучшению.