Система воздухообмена на станциях обслуживания автомобилей

Дипломная работа

Необходимый воздухообмен в час

Минимальный воздухообмен может быть следующим

* на стоянке автомобилей кратность должна быть не менее 4 до 6

* на СТО или мастерских кратность может быть взята в пределах от 20 до 30

Приток воздуха в гараж может быть определен по следующей формуле

Q = n V (1)

где

Q = общая подача воздуха (м 3 / ч)

n = требуется смен воздуха в час (ч -1)

V = объем гаража (м 3)

Содержание CO в воздухе

Необходимое количество приточного воздуха может быть также определено по содержанию во внутреннем воздухе оксида углерода q CO, который в свою очередь определяется по следующей формуле

q CO = (20 + 0,1* l 1) c 1 + 0.1 c 2* l 2 (1)

где q = количество CO в воздухе (м 3 / ч)

с 1 = количество мест на стоянке (количество автомобилей) или в гараже

l 1 = средняя дистанция, которую проезжают автомобили до места парковки в гараже или на стоянке

с 2 = количество автотранспортных средств, проезжающих через гараж

l 2 = средняя дистанция для автомобилей, проезжающих через гараж

а количество приточного воздуха Q:

Q = kq CO (2)

Где Q = необходимое количество свежего воздуха (м 3 / ч)

к = коэффициент, учитывающий время нахождения людей в гараже или на стоянке

к = 2, если в гараже люди находятся небольшое количество времени

к = 4, если люди находятся постоянно — СТО, мастерские

Вентиляция гаража. Пример.

Определение количества приточного воздуха

Стоянка машин

Необходимо определить подачу воздуха в помещение стоянки автомобилей со следующими данными: 10 машин, площадь 150 м 2, объем помещения 300 м 2 и средняя дистанция, которую проезжают автомобили равна 20 метрам.

Все это может быть определено как:

Необходимый воздухообмен в час

Если будем использовать требование соблюдения необходимой кратности воздухообмена в час, а кратность для стоянок автомобилей (смотрите выше) должна быть не менее 4-х воздухообмена в час, то получим следующее значение расхода воздуха Q = 4*300 (м 3 / ч) = 1200 м 3 / ч

Содержание CO в воздухе

Если будем считать необходимую подачу свежего воздуха по выбросам от машин оксида углерода, то получим следующую величину q CO

10 стр., 4934 слов

Автомобили и экология

... автомобилей и примерно 1 млн. городских автобусов. Автомобили сжигают огромное количество ценных нефтепродуктов, нанося одновременно ощутимый вред окружающей среде, главным образом атмосфере. Поскольку основная масса автомобилей сконцентрирована в крупных и крупнейших городах, воздух ...

q CO = (20 + 0,1* 20) 10 = 220 м 3 / ч CO

а необходимый расход воздуха

Q = 2*220 (м 3 / ч) = 440 м 3 / ч воздуха

Так как, при проектировании вентиляции в случае выбора величины необходимого воздухообмена в помещении всегда выбирают большую величину то расход приточного воздуха в помещении автостоянки должен быть 1200 м 3/ч.

Ремонтная мастерская, СТО

Необходимо определить расход приточного воздуха в помещении ремонтной мастерской (СТО) со следующим техническим заданием: количество машин 10, площадь помещения 150 м 2, объем помещения 300 м 2 и средняя дистанция, которую проезжают автомобили равна 20 метрам.

Необходимый минимальный воздухообмен

Если будем использовать требование соблюдения необходимой кратности воздухообмена в час, а кратность для СТО (смотрите выше) должна быть не менее 20-го воздухообмена в час, то получим следующее значение расхода воздуха

Q = 20 * 300 (м 3 / ч)= 6000 м 3 / ч

Содержание CO в воздухе

Если будем считать необходимую подачу свежего воздуха по выбросам от машин оксида углерода, то получим следующую величину выброса q CO

q CO = (20 + 0,1* 20) 10 = 220 м 3 / ч CO

А необходимый расход воздуха (коэффициент равен 4 — люди в помещении находятся постоянно)

Q = 4*220 (м 3 / ч) = = 880 м 3 / ч воздуха

Подача воздуха должна быть не менее 6000 м 3 / ч.

Типичное решение вентиляции для небольших гаражей

Вентиляция гаража небольшого не требует сложного расчета. Свежий воздух поступает через решетки в наружной стене. Загрязненный воздух удаляется через отверстия в полу и крыше через решетки с помощью вентилятора

10. Расчет воздуховода общеобменной вентиляции

Для расчета необходимо знать теплофизические характеристики рабочего тела (воздуха):

  • температура воздуха внутри воздуховода ;
  • плотность воздуха кг/м;
  • плотность наружного воздуха кг/м;
  • температура наружного воздуха ;

Определяем естественное расчетное давление:

Па, где

м — вертикальное расстояние от центра оконного проема до устья вытяжной шахты;

Эквивалентный диаметр для каждого участка:

м;

По заданному эквивалентному диаметру определяем площадь сечения трубы для каждого участка:

м;

Скорость течения воздуха в воздуховоде для каждого участка будет равна:

, м/с, где

расход удаляемого воздуха;

  • Для 1-го участка: м/с;
  • Для 2-го участка: м/с;
  • Для 3-го участка: м/с;
  • Для 4-го участка: м/с;
  • Для 5-го участка: м/с;
  • Для 6-го участка: м/с;
  • Для 7-го участка: м/с;
  • Для 8-го участка: м/с;
  • Для 9-го участка: м/с;
  • Для 10-го участка: м/с;
  • Для 11-го участка: м/с;

Потери на 1 м длины участка характеризуется числом Рейнольдса:

, где

коэффициент вязкости;

  • Для 1-го участка: ;
  • Для 2-го участка: ;
  • Для 3-го участка: ;
  • Для 4-го участка: ;
  • Для 5-го участка: ;
  • Для 6-го участка: ;
  • Для 7-го участка: ;
  • Для 8-го участка: ;
  • Для 9-го участка: ;
  • Для 10-го участка: ;
  • Для 11-го участка: ;
  • Ламинарный режим течения существует устойчиво при числах Рейнольдса Re<2300.

При Re>2300 ламинарное течение теряет устойчивость. При 2300<Re<4000 существует переходный режим течения, а при Re>4000 течение становится турбулентным.

8 стр., 3512 слов

Организация работы шиномонтажного участка

... реферата – изучение и характеристика организации работы шиномонтажного участка. 1. Оборудование шиномонтажного участка ... колес легковых автомобилей, грузовой техники, коммерческого транспорта. ... системой подвода сжатого воздуха. Контрольный осмотр дисков ... шиномонтажа, Ручной инструмент для шиноремонта, Расходные материалы для шиноремонта и балансировки 2. Примерная планировка шиномонтажного участка ...

Так как Re>2300, то потери на 1 м длины участка для каждого участка будет равен:

, где

кинетическая энергия воздуха;

  • Для 1-го участка: Па/м;
  • Для 2-го участка: Па/м;
  • Для 3-го участка: Па/м;
  • Для 4-го участка: Па/м;
  • Для 5-го участка: Па/м;
  • Для 6-го участка: Па/м;
  • Для 7-го участка: Па/м;
  • Для 8-го участка: Па/м;
  • Для 9-го участка: Па/м;
  • Для 10-го участка: Па/м;
  • Для 11-го участка: Па/м;

Потеря давления на местное сопротивление для каждого участка:

, Па, где

сумма коэффициентов местных сопротивлений (берется из табличных данных СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование»);

  • Для 1-го участка: Па;
  • Для 2-го участка: Па;
  • Для 3-го участка: Па;
  • Для 4-го участка: Па;
  • Для 5-го участка: Па;
  • Для 6-го участка: Па;
  • Для 7-го участка: Па;
  • Для 8-го участка: Па;
  • Для 9-го участка: Па;
  • Для 11-го участка: Па;
  • Для 10-го участка: Па;
  • коэффициент, учитывающий шероховатость стенок воздуховода, определяется для каждого участка по СНиП 2.04.05-91.

Полное давление, по которому выбирается вентилятор, определяется по формуле:

Па;

  • На заданную подачу вентиляторной установки принимаем запас в пределах 10% на возможные дополнительные потери.

Определяем полную мощность вентилятора:

Вт = 0,864 кВт, где

производительность вентилятора;

  • давление, создаваемое вентилятором;
  • КПД вентилятора;
  • КПД привода клиноременной передачи.

Определяем установочную мощность с запасом:

кВт, где

коэффициент запаса.

По полученной мощности подбираем вентилятор ВЦ-4-70-3.15, мощностью электродвигателя 1,5 кВт, производительностью 1560 — 3800 м/ч.

Расчет воздуховода ведется по той же методике, что и расчет воздуховода для общеобменной системы вентиляции.

Расход воздуха от одного автомобиля равен L = 200 м/ч, количество автомобилей в помещении — 4.

Определяем естественное расчетное давление:

Па, где

м — вертикальное расстояние от центра оконного проема до устья вытяжной шахты;

Эквивалентный диаметр для каждого участка:

м;

По заданному эквивалентному диаметру определяем площадь сечения трубы для каждого участка:

м;

Скорость течения воздуха в воздуховоде для каждого участка будет равна:

, м/с, где

расход удаляемого воздуха;

  • Для 1-го участка: м/с;
  • Для 2-го участка: м/с;
  • Для 3-го участка: м/с;
  • Для 4-го участка: м/с;
  • Для 5-го участка: м/с;

Потери на 1 м длины участка характеризуется числом Рейнольдса:

, где

коэффициент вязкости;

  • Для 1-го участка: ;
  • Для 2-го участка: ;
  • Для 3-го участка: ;
  • Для 4-го участка: ;
  • Для 5-го участка: ;
  • Так как Re>2300, то потери на 1 м длины участка для каждого участка будет равен:

, где

кинетическая энергия воздуха;

  • Для 1-го участка: Па/м;
  • Для 2-го участка: Па/м;
  • Для 3-го участка: Па/м;
  • Для 4-го участка: Па/м;
  • Для 5-го участка: Па/м;

Потеря давления на местное сопротивление для каждого участка:

, Па, где

сумма коэффициентов местных сопротивлений (берется из табличных данных СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование»);

  • Для 1-го участка: Па;
  • Для 2-го участка: Па;
  • Для 3-го участка: Па;
  • Для 4-го участка: Па;
  • Для 5-го участка: Па;
  • коэффициент, учитывающий шероховатость стенок воздуховода, определяется для каждого участка по СНиП 2.04.05-91.

Полное давление, по которому выбирается вентилятор, определяется по формуле:

Па;

  • На заданную подачу вентиляторной установки принимаем запас в пределах 10% на возможные дополнительные потери.

Определяем полную мощность вентилятора:

Вт = 0,091кВт, где

производительность вентилятора;

  • давление, создаваемое вентилятором;
  • КПД вентилятора;
  • КПД привода клиноременной передачи.

Определяем установочную мощность с запасом:

кВт, где

коэффициент запаса.

По полученной мощности подбираем вентилятор ВЦ-4-70-2.5, мощностью электродвигателя 0,18 кВт, производительностью 430 — 960 м/ч.

Все найденные значения заносим в таблицу 2.1.

Таблица 2.1. Название

уч.

L, м/ч

?, м

аЧb,

м

d, м

f, м

, м/с

R.,

Па/м

R???в,

Па

h

Z,

Па

R???в+

+ Z

1

200

2

0,05×0,05

0,05

0,03

1,76

0,002

0,99

0,004

1,89

1,3

2,4

2,47

2

400

5

0,05×0,05

0,05

0,03

3,53

0,093

0,99

0,461

7,59

1,3

9,8

10,3

3

600

9

0,05×0,05

0,05

0,03

5,30

0,209

0,99

1,868

17,0

3,7

63,2

65,0

4

800

9

0,05×0,05

0,05

0,03

7,07

0,372

0,99

3,321

30,3

1,3

39,4

42,8

5

1000

4,5

0,05×0,05

0,05

0,03

8,84

0,582

0,99

2,595

47,4

1,3

61,7

64,2

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Подбор оборудования для системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:

L = n * S * H, где

L — требуемая производительность приточной вентиляции, м3/ч;

  • n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
  • S — площадь помещения, м2;
  • H — высота помещения, м;

Расчет воздухообмена по количеству людей:

L = N * Lнорм, где

L — требуемая производительность приточной вентиляции, м3/ч;

  • N — количество людей;

Lнорм — норма расхода воздуха на одного человека:

  • в состоянии покоя — 20 м 3 /ч;
  • работа в офисе — 40 м 3 /ч;
  • при физической нагрузке — 60 м 3 /ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках.

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

Для квартир — от 100 до 500 м 3 /ч;

Для коттеджей — от 1000 до 2000 м 3 /ч;

Для офисов — от 1000 до 10000 м 3 /ч.

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.

Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов).

Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:

Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания.

При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

I = P / U, где

I — максимальный потребляемый ток, А;

  • Р — мощность калорифера, Вт;

U — напряжение питание:

220 В — для однофазного питания;

660 В (3 Ч 220В) — для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ДT = 2,98 * P / L, где

ДT — разность температур воздуха на входе и выходе системы приточной вентиляции, °С;

  • Р — мощность калорифера, Вт;
  • L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров).

Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением 4-5 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании систем вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Список литературы

[Электронный ресурс]//URL: https://obzone.ru/diplomnaya/ventilyatsionnoe-oborudovanie-avtoservisov/

1. Синельников А.Ф., Штоль Ю.Л., Скрипников С.А. «Кузова легковых автомобилей: обслуживание и ремонт», М.: Транспорт, 1999 г.

2. Епифанов Л.И. «Техническое обслуживание и ремонт автомобилей»

3. Шестопалов С.К. «Устройство, техническое обслуживание и ремонт автомобилей», Высшая школа, 2001 г.

4. Белов С.В. «Безопасность жизнедеятельности», М.: Высшая школа, 2001 г.

5. Бакалов Б.В., Карпис Е.Е. «Кондиционирование воздуха в промышленных, общественных и жилых зданиях», М.: Стройиздат, 1994 г.

6. Тихомиров К.В., Сергеенко Э.С. «Теплотехника, теплогазоснабжение и вентиляция», М.: Стройиздат, 1991 г.

7. Соснин Ю.П. «Инженерные сети. Оборудование зданий и сооружений», М.: Высшая школа, 2001 г.

8. Цимбалин В.Б., Успенский И.Н. Атлас конструкций. Шасси автомобиля — Москва: «Машиностроение», 1977, 106 с.

9. Краткий автомобильный справочник. — 10-е изд., перераб. и доп. — М.: Транспорт, 1984. — 220 с.

10. Экологическая безопасность автотранспортного комплекса URL:http://www.centreco.ru/lit_def/41.php

11. Оборудование порошковой окраски URL:http://www.prompolymer.ru/opo.html

12. А.М. Козлитин, Б.Н. Яковлев, «Чрезвычайные ситуации техногенного характера. Прогнозирование и оценка», учебное пособие, Саратов, 2000

13. Ю.В. Еганов, «Прогнозирование и оценка обстановки в чрезвычайных ситуациях», Обнинск, 2003]

14. Б.С. Мастрюков «Безопасность в чрезвычайных ситуациях», Москва, издательский центр «Академия», 2007