Везикулярный транспорт

Реферат

Синтезируемые в цитоплазме на рибосомах белки должны попадать в разные компартменты клетки — ядро, митохондрии, ЭПР, аппарат Гольджи, лизосомы и др., а некоторые белки должны попасть во внеклеточную среду. Для попадания в определённый компартмент белок должен обладать специфической меткой. В большинстве случаев такой меткой является часть аминокислотной последовательности самого белка (лидерный пептид, или сигнальная последовательность белка).

В некоторых случаях меткой служат посттрансляционно присоединённые к белку олигосахариды. Транспорт белков в ЭПР осуществляется по мере их синтеза, так как рибосомы, синтезирующие белки с сигнальной последовательностью для ЭПР, «садятся» на специальные транслокационные комплексы на мембране ЭПР. Из ЭПР в аппарат Гольджи, а оттуда в лизосомы, на внешнюю мембрану или во внеклеточную среду белки попадают путём везикулярного транспорта. В ядро белки, обладающие сигнальной последовательностью для ядра, попадают через ядерные поры. В митохондрии и хлоропласты белки, обладающие соответствующими сигнальными последовательностями, попадают через специфические белковые поры-транслокаторы при участии шаперонов.

Пути транспорта белков в клетке

Пути транспорта белков в клетке 1

Пути транспорта в клетке

Синтез белка всегда начинается в цитоплазме. Окончание синтеза происходит в цитоплазме либо на шероховатом эндоплазматическом ретикулуме (ШЭР).

Можно условно выделить два пути транспорта белка в клетке:

1. Из цитоплазмы в некоторые органеллы (ядро, пластиды, митохондрии)

2. Большой путь везикулярного транспорта из ШЭР через аппарат Гольджи (АГ) к другим органеллам (лизосомы, пероксисомы) и через секреторные везикулы во внеклеточную среду. Поскольку синтез всех белков начинается в цитоплазме, а конечная локализация каждого белка может быть различна внутри полипептида имеется система сигналов определяющая его транспортный путь. Первичный сигнал определяет путь из цитоплазмы (в ШЭР, в ядро, в митохондрию или в пластиду), вторичный сигнал определяет дальнейшее направление, например, внешняя или внутренняя мембрана митохондрии или матрикс; лизосома, пероксисома или секреторная гранула.

Сигнальные последовательности белков

Сигнальные последовательности имеют длину 3-80 аминокислот узнаются специфическими рецепторами на мембранах различных компартментов клетки.

3 стр., 1291 слов

Транспорт веществ через мембрану

... белки, нуклеиновые кислоты, нейромедиаторы и т.п. Трансцитоз Существует еще одно понятие - трансцитоз( или рекреция). Это перенос веществ через клетку; Здесь сочетаются эндо- и экзоцитоз. Например, транспорт белковых ... Молекулярная биология ... транспорт вторично- активным транспортом Вторично-активный транспорт некоторого вещества возможен только тогда, когда он связан с транспортом другого вещества по ...

Сигнальная последовательность ЭР — гидрофобный участок 5-15 аминокислот на N-конце полипептида.

Сигнал митохондриальных белков 20-80 аминокислот состоящий из спирали и торчащих концов — (+)-заряженного и гидрофобного. 5 (+)-заряженных аминокислот для транспортировки в ядро. Пероксисомные белки имеют последовательность на С-конце Ser-Lys-Leu-COOH.

Имеется класс сигнальных последовательностей которые не позволяют белку достигшему определенной локализации транспортироваться дальше. Например, мотив Lys-Asp-Glu-Leu-COOH (KDEL) не позволяет белкам покидать эндоплазматический ретикулум.

Одна из функций гладкого ЭР — удержание кальция готового для выпуска в цитозоль при стимуляции клетки. Кальретикулин — белок удерживающий ионы кальция. Первые 17 аминокислот включают 14 гидрофобных (синие) — сигнальная последовательность для проникновения в ЭР из цитозоля. Последние четыре аминокислоты KDEL удерживают белок в ЭР.

(NH2)MLLSVPLLLGLLGLAVAEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSGKF

YGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDCGGGYVKLFP

NSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLINKDIRCKDDEFTHLYTLIVRP

DNTYEVKIDNSQVESGSLEDDWDFLPPKKIKDPDASKPEDWDERAKIDDPTDSKP

EDWDKPEHIPDPDAKKPEDWDEEMDGEWEPPVIQNPEYKGEWKPRQI

DNPDYKGTWIHPEIDNPEYSPDPSIYAYDNF

GVLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDEEQRL

KEEEEDKKRKEEEEAEDKEDDEDKDEDEEDEEDKEEDEEEDVPGQAKDEL(COOH)

Некоторые белки имеют различные локализации в клетки. Существует несколько путей транспортировки идентичных полипептидов в различные компартменты клетки [Karniely, 2005]:

1. Несколько сигнальных последовательностей в одном полипептиде преднозначенные для разных компартментов. Каталаза А дрожжей имеет две сигнальные последовательности — для митохондрий и пероксисом, причем количество фермента в этих органеллах зависит от состава среды. Некоторые цитохромы имеют два сигнала — митохондриальный и ЭР. Митохондриальный сигнал запускается после посттрансляционного фосфорилирования белка. Известно, что белок-предшественник амилоида болезни Альцгеймера также имеет два сигнала локализации — ЭР и митохондрий.

2. Одна сигнальная последовательность узнается различными рецепторами на поверхности компартментов. Например, некоторые белки митохондрий и хлоропластов имеют общую сигнальную последовательность, которая более гидрофобна чем специфические сигналы.

3. Сигнал может быть блокирован другим белком. Апуриновая/апиримидиновая эндонуклеаза 1 (Apn1) — основной фермент эксцизионной репарации репарации ДНК в ядре и митохондриях. С-конец имеет сигнал ядерной локализации (NLS), за которым идет сигнал митохондриальной локализации. белок Pir1 взаимодействует с С-концом Apn1 блокируя NLS.

4. Сигнал может быть блокирован специфическим сворачиванием белка. Аденилат-киназа дрожжей Aky2 локализуется в цитоплазме и в небольшом количестве в межмембранном пространстве митохондрий, имеет две сигнальные последовательности, активность которых зависит от конформации белка.

5. Сигнал может быть блокирован после модификации полипептида. Фосфорилированный цитохром CYP2B1, взаимодействует с цитозольным шапероном Hsp70, что приводит к конформационным изменениям и переключает одну сигнальную последовательность на другую.

8 стр., 3855 слов

Системы GPS-мониторинга транспорта

... Передающая аппаратура излучает синусоидальные сигналы на двух частотах: L1 = 1575,42 МГц и L2 = 1227,60 МГц. Перед этим сигналы модулируются псевдослучайными цифровыми последовательностями (эта процедура называется ... и управляется Министерством Обороны США. Космический сегмент (орбитальная группировка) системы GPS на данный момент содержит 24 спутника. У каждого спутника имеется порядковый номер ...

6. Одна РНК может иметь два сайта инициации трансляции при этом образуются два белка — один с сигнальной последовательностью, другой без нее, что определит различную локализацию белков в клетке. В другом случае может образовываться две различные РНК кодирующие два идентичных белка, но у одного будет сигнальная последовательность, а у другого нет.

Транспорт в ядро

Транспорт в митохондрии и пластиды

Митохондрии и пластиды имеют собственную ДНК и самостоятельно синтезируют некоторые белки. Однако многие из основных белков митохондрий и пластид синтезируются в цитозоле.

Белки проникающие в митохондрии должны нести сигнал, определяющий локализацию — внутрення или наружная мембрана, или матрикс.

Белки преднозначенные для матрикса несут сигнал на N-конце, который узнается рецепторами на внешней мембране. Рецептор связан с комплексом переноса белка, который разворачивает белок и переносит его через мембрану. После переноса белка сигнальная последовательность отрезается и белок снова сворачивается.

Белки шапероны связываются с вновь синтезированным белком предотвращая его сворачивание.

Шаперонины связываются с белком после его транспортировки к месту доставки и способствуют правильному сворачиванию.

В ответ на различные стрессовые воздействия (например повышение температуры) в клетке синтезируются шапероны называемые белками теплового шока — hsp (heat-shock proteins), которые стабилизируют клеточные белки. Hsp обнаружены во всех клеточных компартментах эукариот и у бактерий.

Везикулярный транспорт

Из одной органеллы в другую перемещение происходит в везикуле или на ее поверхности в виде интегральных белков.

Донорый компартмент – органелла от которой отрывается мембрана в составе везикулы, акцепторный компартмент – принимает везикулу.

конститутивная секреция – происходит постоянно и не зависит от внешних сигналов.

регулируемая секреция – под ПМ происходит накопление пузырьков, которые сливаются с ПМ при наличии внешних сигналов – гормоны, нервы – и повышении конц. Ca2+ до 1мкм

ретроградный транспорт – возвращение рецепторных белков и липидов из АГ в Эр — восполнение мембраны ЭР.

антероградный транспорт – растворимые грузовые белки двигаются по секреторному пути ЭР. Окаймленные везикулы — покрыты белками, кот узнают и концентрируют специфич. м-ные белки и отделяют м-ну пузырька, формируют решетку и придают форму везикуле: клатриновые, COPI, COPII:

Клатриновые везикулы – ~0,1мкм, транспорт из АГ и ПМ,клатрин — 3типа, 3 большие и 3 малые субъединицы формирующие трискелетон – собирающиеся на поверхности м-ны со стороны цитоплазмы в пента- и гексагоны, кот спонтанно формируют сферу. Адаптин – связывает клатрин с м-ной и ловит различные трансм-ные белки в том числе грузовые рецепторы, кот. захватывают р-римые грузовые белки, кот попадают внутрь везикулы. Имеетя по крайней мере 4 типа адаптинов

динамин — GTP-аза, р-римый цитоплазматический белок, образует кольцо на отделяющейся клатриновой везикуле – регулирует кол-во клатрина отщепляющееся вместе с м-ной в составе везикулы, ассоциирует другие белки помогающие выпучить м-ну и белки модификаторы липидов, изменяющие локально липидный состав м-ны для выпучивания

5 стр., 2048 слов

Биологические функции белков

... т-РНК в процессе биосинтеза белка, катализируют присоединение только L-аминокислот и не катализируют присоединение D-аминокислот. 2. Транспортная функция белков Внутрь клетки должны поступать ... Лактоза по международной номенклатуре обозначается -галаткозид, поэтому транспортный белок называют -галактозидпермеазой. Важным примером транспорта веществ через биологические мембраны против градиента ...

После отделения везикулы от м-ны клатрин и адипин отделяют шапероны — ATP-азы hsp70 семейства. Ауксилин – прикрепляется к везикуле и активирует АТФ-азу. Т.к кайма формирующейся везикулы сущ. дольше чем кайма отделенной – имеется стабилизирующий механизм. Клатриновая оболочка обеспечивает значительную силу для изгибания м-ны, т.к. везикулы из внутриклеточных компартментов образуются на уже выпученной м-не

COP-I – транспорт от АГ и ЭР, 8субъединиц, GTP-белок – фактор рибозилирования АДФ –ARF – транспорт

COP-II – транспорт из АГ и ЭР, 5 субъединиц

Везикулы мб не только сферические, часто образуются трубчатые везикулы в которых высокое соотношение S/V

Образование клатриновых и COP везикул регулируется GTP-связывающими белками, которые могут находится в активном GTP- и неактивном GDP-состоянии

Два класса белков обменивают GDP-GTP: GEF-гуанин-нуклеотид-фактор обмена активирует белки заменяя GDF?GTF, GAP- белок активирующий GTP-азы – инактивирует GTP-связывающие белки меняя GTP?GDP.

GTP-азы необходимые для сборки окаймленных везикул перед сборкой пузырьков: мономерные GTP-связывающие белки (GTP-азы):

ARF-белки – необх для клатриновой и COP сборки на пов-ти м-ны АГ. Sar1 белок, необходим для COPII сборки на на ЭР м-не

тримерные (G белки).

GTP-азы находятся в цитозоле в неактивном состоянии, перед сборкой GEF встраивается в м-ну ЭР и связывает цитозольный SarI, кот обменивает GDF?GTP. В GTP состоянии SarI встраивается остатком жирной к-ты в м-ну ЭР. Ассоциирует белки об-ки и инициирует отпочковывание везикулы. GTP-азы попавшие в м-ну активируют фосфолипазу D, кот преобразует фосфолипиды в фосфотидную к-ту, что усиливает связывание оболочных белков. Вместе белок-белковые и белок-липидные взаимодействия изгибают м-ну

SNARE – белки – отвечают за слияние донорной и акцепторной м-н, более 20, каждая на специфич пов-ти м-ны, трансмембранные белки на пов-ти везикулы — v-SNAR, на пов-ти донора – t-SNAR. Взаимодействуя v- и t-SNAR обвиваются др на друга в транс-SNAR-комплекс, обеспечивающий слияние м-н. SNF-белок разрушает транс-SNAR-комплексы – цитозольный шаперон ATP-аза, использует адаптирующие белки для связывания с комплексом-SNAR

Rab-белки – мономерные GTP-азы, более 30, каждая органелла имеет хотя бы один Rab на м-не со стороны цитоплазмы, регулируют стыковку везикул и связывание v-SNAR-ов и t-SNAR-ов необходимых для слияния м-н. В состоянии GDP-не активны, нах в цитозоле, в состоянии GTP-активны и переходят на пов-ть м-ны органеллы или везикулы. В активном состоянии Rap связываются с м-ной липидным якорем и собирают другие белки участвующие в слиянии м-н

неактивный Rab-GDP связан с GDI – GDP-диссоциирующий ингибитор. Rab-GDP связывается с GEF-гуанин нуклеотид меняющий фактор, связанный с м-ной донорного компартмента – меняет GDP на GTP. Rab-GTP связывается с м-ной формирующейся везикулы и ассоциирует v-SNARE, которые в составе везикулы транспортируются к органелле и связываются с Rab-эффекторами и t-SNARE, связанными с м-ной акцепторного компартмента и обеспечивают слияние м-н

белок органелла

Rab1 ЭР и АГ

Rab2 цис-АГ

Rab3A синаптич везикулы, секрет гранулы

Rab4 ранние эндосомы

5 стр., 2453 слов

Транспорт через мембрану клетки

... плазматической мембране нейронов и мышечных клеток довольно низка, поэтому эффективность этой транспортной системы не слишком высока. Тем ... нейронов. Накопление молекул медиатора в синаптических пузырьках (везикулах) в цитоплазме пресинаптического окончания невозможно без такого ... отслеживания изменений уровня кальция - трансфекция особых белковых комплексов, созданных при помощи генной инженерии таким ...

Rab5A ПМ, клатриновые везикулы

Rab5C ранние эндосомы

Rab6 промежуточный- и транс-АГ

Rab7 поздние эндосомы

Rab8 секреторные везикулы (базолатеральные)

Rab9 поздние эндосомы, trans-АГ

Слияние м-н происходит не только при везикулярном транспорте: слияние спермия с яйцом, слияние миобластов во время развития мышечной клетки.

Везикулярный транспорт 1 Образование клатринового пузырька. Диаметр клатринового пузырька ~0,3 мкм

Везикулярный транспорт 2 клатриновая везикула

Транспорт белков из аппарата Гольджи на наружную мембрану

Белки, встроившиеся в мембрану ЭПС и попавшие оттуда в составе везикул в АГ, могут перемещаться на наружную мембрану клетки. Их направление к мембране осуществляется благодаря взаимодействию везикул с микротрубочками цитоскелета и благодаря особым стыковочным белкам, которые обеспечивают слияние везикул с мембраной

Экзоцитоз и трансцитоз, Экзоцитоз

прокариот

Экзоцитоз может выполнять различные задачи:

  • доставка на клеточную мембрану липидов, необходимого для роста клетки;
  • доставка на клеточную мембрану мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки;
  • выделение различных веществ из клетки; это могут быть, например, непереваренные остатки пищи у фаготрофных протистов, пищеварительные ферменты у животных с полостным пищеварением, белки межклеточного вещества у животных и материал клеточной стенки у растений, сигнальные молекулы (гормоны или нейромедиаторы).

У эукариот различают два типа экзоцитоза:

  1. Кальций-независимый конститутивный экзоцитоз встречается практически во всех эукариотических клетках. Это необходимый процесс для построения внеклеточного матрикса и доставки белков на внешнюю клеточную мембрану. При этом секреторные везикулы доставляются к поверхности клетки и сливаются с наружной мембраной по мере их образования.
  2. Кальций-зависимый неконститутивный экзоцитоз встречается, например, в химических синапсах, где служит для выделения нейромедиаторов. При этом типе экзоцитоза секреторные пузырьки накапливаются в клетке, а процесс их высвобождения запускается по определённому сигналу, опосредованному быстрым повышением концентрации ионов кальция в цитозоле клетки. В пресинаптических мембранах процесс осуществляется специальным кальций-зависимым белковым комплексом [w:[SNARE|]] .

Заключение.

Подготовив работу на тему «везикулярный транспорт» я поняла, что это очень важный и сложный процесс.

Сложная организация эукариотических клеток требует налаженных механизмов внутриклеточного везикулярного транспорта. Новейшие исследования показали, что механизмы, лежащие в основе таких функционально важных процессов как эндо- и экзоцитоз уникальны и, сохранившись в процессе эволюции, эффективно действуют как в клетке дрожжей, так и в нейроне гиппокампа. Как эндоцитоз лиганд-рецепторного комплекса с поверхности плазматической мембраны, так и транспорт вновь синтезируемых секреторных белков из эндоплазматического ретикулума через цис-, медиал-, транс- Гольджи к поверхности плазматической мембраны осуществляются в везикулах. Транспортные везикулы формируются и отпочковываются от донорной мембраны и после осуществления раунда внутриклеточного транспорта сливаются с акцепторной мембраной. Специализированные белки цитоплазмы покрывают вновь образованные везикулы. Согласно современным представлениям, формирование транспортной везикулы на мембране внутриклеточного компартмента начинается после взаимодействия белков, переносимых везикулой, с трансмембранным рецептором. Изменение структурного состояния связанного рецептора может распознаваться цитоплазматическими белками, которые ассоциируются с мембраной и инициируют образование транспортной везикулы.

9 стр., 4080 слов

Транспорт веществ через биологические мембраны

... часть мембраны, перенос гидрофильных веществ через поры, образуемые мембранными липидами и белками, облегченная диффузия с участием специальных молекул-переносчиков, избирательный транспорт ионов ... использованием энергии, универсальным источником которой в клетке является молекула аденозинтрифосфорной кислоты. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ Живые системы на всех уровнях организации ...

Используемая литература:

[Электронный ресурс]//URL: https://obzone.ru/referat/vezikulyarnyiy-transport/

1. Альбертс Б., Брей Д. и др. Молекулярная биология клетки. – М., 1994.

2. Горышина Е.Н., Чага О.СЮ. Сравнительная гистология тканей внутренней среды с основными иммунологами. – Л., 1990.

3. Заварзин А.А. Основы сравнительной гистологии. – Л., 1985.

4. Балахонов А.В. Ошибки развития. — Л., 1990.

5. Гилберт С. Биология развития: в 3-х т. – М., 1993-95.

6. Светлов П.Г. Физиология (механика) развития. — Л., 1978. т.1, 2.

7. Станек И. Эмбриология человека. – Братислава, 1977.

8. Юрина Н.А., Торбек В.Э., Румянцева Л.С. Основные этапы эмбриогенеза позвоночных животных и человека. – М., 1984.