Физиология системы крови

Курсовая работа
Содержание скрыть

Физиология системы крови.

Кровь, нагнетаемая сердцем, протекает внутри тела со скоростью 11 м/с, то есть 40 км/ч. Кровоток — это сплошной поток плотностью 1,06 г/см3. Он протекает по сети кровеносных сосудов, которая включает в себя большие вены и артерии, многократно ветвящиеся и постепенно уменьшающиеся до размеров крохотных капилляров. Через тончайшие стенки капилляров легко просачиваются различные вещества, отчего в живых тканях происходит непрерывный обмен: кровь отдает клеткам организма вещества, поддерживающие жизнь, и вымывает продукты распада.

Поступая во все части организма кровь выполняет различные важные функции:

Питательная функция, Транспортная функция, Способность останавливать кровотечение, Терморегуляторная функция, Функция регулятора рН, Защитная функция, Объем и физико-химические свойства крови, Общее количество крови

Но кровь не заполняет кровеносную систему до краев, а с большим или меньшим постоянством находится лишь в какой-то части организма, оставляя значительную долю сосудистой системы «пустой».

Дело в том, что протяженность кровеносной системы человека может доходить до 100 000 километров и, по подсчетам А.Карреля, для ее заполнения требуется 200 000 литров, т.е. по 2 литра крови на один километр, тогда как наш организм располагает лишь 5-7 литрами. Грубо говоря, кровеносная система человека заполнена на 1/40 000 ее потенциального объема.

Повышение общего объема крови называют гиперволемией, уменьшение – гиповолемией.

Относительная плотность крови, Вязкость крови –, Осмотическое давление крови

определяет распределение воды между тканями и клетками

Онкотическое давление крови, Кислотно-основное состояние крови (КОС)

В организме человека всегда имеются условия для сдвига активной реакции крови в сторону ацидоза или алкалоза, которые могут привести к изменению рН крови. В клетках тканей постоянно образуются кислые продукты. Накоплению кислых соединений способствует потребление белковой пищи. Напротив, при усиленном потреблении растительной пищи в кровь поступают основания. Поддержание постоянства рН крови является важной физиологической задачей и обеспечивается буферными системами крови. К буферным системам крови относятся гемоглобиновая, карбонатная, фосфатная и белковая.

5 стр., 2048 слов

Биологические функции белков

... L-аминокислот и не катализируют присоединение D-аминокислот. 2. Транспортная функция белков Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ... и расширении эластичных труб. У многоклеточных организмов существует система транспорта веществ от одних органов к ... 26) гемоглобин. Кроме того, в плазме крови постоянно находится транспортный белок - сывороточный альбумин. Этот белок ...

Буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей, тем самым препятствуя сдвигу активной реакции крови. В организме в процессе метаболизма в большей степени образуется кислых продуктов. Поэтому запасы щелочных веществ в крови во много раз превышают запасы кислых, Их рассматривают как щелочной резерв крови.

Состав крови

Состав крови 1

Состав крови 2

гематокритного соотношения

  • Плазма крови.
  • Эритроциты, или красные кровяные тельца. Содержат гемоглобин — дыхательный пигмент красного цвета.
  • Лейкоциты, или белые кровяные тельца. Выполняют защитные функции.
  • Тромбоциты, или кровяные пластинки. Необходимы для свертывания крови.

Если налить в пробирку немного крови, то через 10 или 15 минут она превратится в пастообразную однообразную массу — сгусток . Затем сгусток сжимается и отделяется от желтоватой прозрачной жидкости — сыворотки крови .

фибриноген

Плазма крови

  • Белки. Это альбумины, глобулины и фибриноген.
  • Неорганические соли.

Находятся растворенными в виде анионов (ионы хлора, бикарбонат, фосфат, сульфат) и катионов (натрий, калий, кальций и магний).

Действуют как щелочной резерв, поддерживающий постоянство рН, и регулирует содержание воды.

— Транспортные вещества. Это вещества — производные от пищеварения (глюкоза, аминокислоты) или дыхания (азот, кислород), продукты обмена (двуокись углерода, мочевина, мочевая кислота) или же вещества, всасываемые кожей, слизистой оболочкой, легкими и т.д.

  • В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

К органическим веществам плазмы крови, Белки плазмы, Альбумины, Глобулины

a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин.

b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.

g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К G -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

Фибриноген

Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.

небелковые азотсодержащие соединения

безазотистые органические вещества

Из плазмы крови образуются телесные жидкости, Форменные элементы крови

Из плазмы крови образуются телесные жидкости 1

Форменные элементы крови человека в мазке.

1 – эритроцит, 2 – сегментоядерный нейтрофильный гранулоцит, 3 – палочкоядерный нейтрофильный гранулоцит, 4 – юный нейтрофильный гранулоцит, 5 – эозинофильный гранулоцит, 6 – базофильный гранулоцит, 7 – большой лимфоцит, 8 – средний лимфоцит, 9 – малый лимфоцит, 10 – моноцит, 11 – тромбоциты (кровяные пластинки).

Из плазмы крови образуются телесные жидкости 2

Из плазмы крови образуются телесные жидкости 3

Из плазмы крови образуются телесные жидкости 4

Электронная микрофотография гемолиза эритроцитов и образование их “теней”

1 – дискоцит, 2 – эхиноцит, 3 – “тени” (оболочки) эритроцитов.

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Эритроциты выполняют в организме следующие функции

1) основной функцией является дыхательная – перенос кислорода от альвеол легких к тканям и углекислого газа от тканей к легким;

2) регуляция рН крови благодаря одной из мощнейших буферных систем крови – гемоглобиновой;

3) питательная – перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;

4) защитная – адсорбция на своей поверхности токсических веществ;

5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;

6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В 1 , В2 , В6 , аскорбиновая кислота);

7) эритроциты несут в себе групповые признаки крови.

нормоцитами

гемоглобин

цветовой показатель

Содержание эритроцитов в крови

эритроцитозом

Образование эритроцитов

Кровь снабжается клетками в основном при помощи красного костного мозга (тельца миелоидного происхождения).

Поэтому у детей практически весь костный мозг-красный, в то время как у взрослого человека его процент составляет только половину, и только в определенных костях производится кровь.

Когда лимфоциты переходят в лимфатические узлы, образуются лимфоциты В, участвующие в выработке антител, а когда переходят в тимус, образуются лимфоциты Т, вызывающие отторжения при пересадке органов.

материанской полипотентной клетке

Этот процесс происходит примерно на третьей неделе жизни человеческого зародыша. И только к четвертому месяцу начинают проявлять активность костный мозг и лимфатические органы.

Для образования эритроцитов требуются железо и ряд витаминов.

Железо организм получает из гемоглобина разрушающихся эритроцитов и с пищей.

витамин В 12

Для нормального эритропоэза необходимы микроэлементы — медь, никель, кобальт, селен.

эритропоэтины

ретикулоцитов

Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитарной системы. Продукты распада эритроцитов также являются стимуляторами кроветворения.

Процесс разрушения оболочки эритроцитов, Осмотический гемолиз, Химический гемолиз, Биологический гемолиз, Температурный гемолиз, Механический гемолиз, Скорость оседания эритроцитов (СОЭ)

Процесс разрушения оболочки эритроцитов 1

Процесс разрушения оболочки эритроцитов 2

Органы, в которых образуются лейкоциты

Лейкоциты

  • Каждую секунду погибает примерно 10 миллионов эритроцитов, каждый из которых совершил около 172 000 полных оборотов в системе кровообращения.

фагоцитоза

Осуществление защитной функции различными видами лейкоцитов происходит по-разному.

Нейтрофилы

По нейтрофилам можно определить пол человека, так как у женского генотипа имеются круглые выросты – “барабанные палочки”.

Эозинофилы

Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины. При аллергических реакциях (крапивница, бронхиальная астма, лекарственная болезнь) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что определяет клиническую картину заболеваний.

Моноциты обладают выраженной фагоцитарной функцией. Это самые крупные клетки периферической крови и их называют макрофагами . Моноциты находятся в крови 2-3 дня, затем они выходят в окружающие ткани, где, достигнув зрелости, превращаются в тканевые макрофаги (гистиоциты).

Моноциты способны фагоцитировать микробы в кислой среде, когда нейтрофилы не активны. Фагоцитируя микробы, погибшие лейкоциты, поврежденные клетки тканей, моноциты очищают место воспаления и подготавливают его для регенерации. Моноциты синтезируют отдельные компоненты системы комплемента. Активированные моноциты и тканевые макрофаги продуцируют цитотоксины, интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым осуществляя противоопухолевый, противовирусный, противомикробный и противопаразитарный иммунитет; участвуют в регуляции гемопоэза. Макрофаги принимают участие в формировании специфического иммунного ответа организма. Они распознают антиген и переводят его в так называемую иммуногенную форму (презентация антигена).

Моноциты продуцируют как факторы, усиливающие свертывание крови (тромбоксаны, тромбопластины), так и факторы, стимулирующие фибринолиз (активаторы плазминогена).

Лимфоциты, В-лимфоциты, О-лимфоциты, Лейкоциты образуются в разных органах тела

лейкопоэз

Моноциты всегда сохраняют признаки первичной клетки, поэтому они могут образовываться как при последовательных преобразованиях унопотентной материнской клетки, так и непосредственно из полипотентной материнской клетки.

Лейкоциты делятся на две большие группы: гранулоциты и агранулоциты в зависимости от того, наблюдается или нет зернистость в их цитоплазме.

У первых имеется ядро различных форм, они осуществляют фагоцитоз. Самые многочисленные и активные — это нейтрофилы (70% от общего числа); кроме них имеются базофилы (1%) и эозинофилы (4%).

Незернистые лейкоциты — это моноциты, большего размера и с большой фагоцитарной активностью, и лимфоциты, подразделяющиеся на малые (90%) и большие (остальные 10%).

Лимфоциты 1

Тромбоциты

Тромбоциты 1

Тромбоциты 2

Тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя.

Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты помогают «ремонтировать» кровеносные сосуды, прикрепляясь к поврежденным стенкам, а также участвуют в свертывании крови, которое предотвращает кровотечение и выход крови из кровеносного сосуда.

тромбоцитарный фактор III

Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, выполняя защитную функцию. Тромбоциты содержат большое количество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым состояние гистогематических барьеров.

Тромбоциты образуются в красном костном мозге из гигантских клеток мегакариоцитов. Унопотентная клетка претерпевает неполное деление, потому что ядро делится, а цитоплазма нет. В результате образуется мегакариобласт, от цитоплазмы которого в конце отделяются пластинки.

Тромбоцитопоэтины

Продолжительность жизни тромбоцитов составляет от 5 до 11 дней. Разрушаются кровяные пластинки в клетках системы макрофагов.

Активность тромбоцитопоэтинов регулируется интерлейкинами (ИЛ-6 и ИЛ-11).

Количество тромбоцитопоэтинов повышается при воспалении, необратимой агрегации тромбоцитов.

Тромбоцитопоэтины 1

Гемостаз

Под сосудисто-тромбоцитарным (первичным) гемостазом (Primary (temporary) hemostasis) понимают прекращение или уменьшение кровопотери за счет сокращения (спазма) травмированного сосуда и образования тромбоцитного агрегата («тромбоцитной пробки», «первичной гемостатической пробки» ) в зоне повреждения сосуда (см. Гемостаз: общая схема ).

Данные реакции в совокупности обеспечивают полную остановку кровотечения из капилляров и венул , но кровопотеря из вен , артериол и артерий прекращается лишь частично. Это обусловлено тем, что кровь в них движется под относительно высоким давлением, и поэтому рыхлая структура тромбоцитного агрегата не образует непроницаемую преграду для истечения крови (она проницаема тем более, чем выше давление в сосуде).

Первичный гемостаз называют иногда также временным, имея в виду, что реакции, охватываемые этим термином, могут обеспечить остановку кровотечения, но не всегда и не полностью. Кроме того, цепь гемостатических реакций не заканчивается образованием «тромбоцитной пробки». То есть, первичный гемостаз является лишь первым этапом в остановке кровотечения. Этот процесс начинается в первые секунды после повреждения и играет ведущую роль в остановке кровотечения из капилляров, мелких артериол и венул.

Три важнейших этапа сосудисто-тромбоцитарного гемостаза:

  • адгезия тромбоцитов.
  • активация и дегрануляция тромбоцитов.
  • агрегация тромбоцитов.

Нарушения на любом из этих этапов могут привести к кровоточивости.

Кроветворение (гемопоэз):

Клетки крови играют ключевую роль в доставке кислорода к тканям, защитных реакциях организма и гемостазе. Эритроциты живут в среднем 120 сут, тромбоциты — 7-10 сут, а гранулоциты — всего 6-8 ч. Дольше всех (иногда — годами) могут жить лимфоциты, однако лимфопоэз неэффективен — лишь около 5% клеток в процессе созревания проходят отбор в костном мозге и тимусе и попадают в кровь.

Ежедневно в организме взрослого человека весом 70 кг погибают более 0,5 триллиона дифференцированных клеток, включая 200 млрд эритроцитов и 70 млрд нейтрофилов .

В норме скорость образования клеток крови равна скорости разрушения, но в ответ на увеличение потребности один или несколько клеточных ростков гиперплазируются .

Таким образом, поддержание постоянства состава крови требует непрерывного образования новых клеток. Этот процесс называется кроветворением. Он обеспечивается стволовыми кроветворными клетками — небольшой (0,01%) фракцией костномозговых клеток, из которых возникают все клетки крови.

Гематопоэз это процес генерации зрелых клеток крови , которых за день организм человека производит не много не мало 400 миллиардов. Гематопоэтические клетки происходят от очень небольшого числа тотипотентных стволовых клеток , которые дифференцируются, давая все линии клеток крови. Тотипотентные стволовые клетки наименее специализированы. Более специализированы плюрипотентные стволовые клетки. Они способны дифференцироваться, давая только определенные линии клеток. Различают две популяции плюрипотентных клеток — лимфоидные и миелоидные.

Лимфоидные плюрипотентные клетки дают при дифференцировке В- и Т-лимфоциты.

Миелоидные -дают множество клеток, включая эритроциты, нейтрофилы, моноциты, переходящие в макрофаги, дендритные клетки (dendritic cells, не путать с дендритами нервной системы, dendrites), которые, как теперь выясняется, играют очень важную роль в иммунном ответе, и являются антиген представляющими клетками , эозинофилы, базофилы и мегакариоциты, дающие в свою очередь тромбоциты (Platelets).

Эти клетки являются зрелыми. Они уже неспособны к пролиферации. Между плюрипотентными и зрелыми клетками находятся еще более, чем плюрипотентные клетки, специализированные прогениторные клетки (progenitor cells).

Однако они также способны к значительной пролиферации.

Лимфоидная линия (lineage) включает в себя В- и Т-клеточные линии. Миелоидная линия включает эритроидную, гранулоцитную (дающую нейтрофилы, предназначенные для борьбы с инфекцией), макрофаговую ( дающую макрофаги), дендритную и мегакариотическую линии. Первичным местом гематопоэза является красный костный мозг .

При угнетении кроветворения симптоматика появляется по мере убыли нормальных клеток. Так как первыми исчезают гранулоциты, вначале снижается устойчивость к инфекциям; позднее присоединяется тромбоцитопеническая кровоточивость . Бледность , слабость и одышка при нагрузке (результат убыли эритроцитов ) появляются в последнюю очередь.

Литература

[Электронный ресурс]//URL: https://obzone.ru/kursovaya/transportnaya-funktsiya-krovi/

1. Батуев А.С. и др. Биология. Человек: Словарь-справочник. — М.: Дрофа, 2000. — 160 с.

2. Захаров В.Б. Анатомия и физиология человека. — М.: Просвещение, 2000. — 288 с.

3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в экзаменационных вопросах и ответах. — М.: Рольф, 1998. — С.452-456.

4. Леонтьева М.Н., Маринова К.В. Анатомия и физиология детского организма. — М.: Просвещение, 1986. — С. 124-126.

5. Сапин М.Р. Анатомия и физиология человека. — М.: Просвещение, 2000. — 256 с.

6. Татаринов В.Г. Анатомия и физиология. — М.: Медицина, 1969. — С.228-235.

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ВЕТЕРИНАРНОЙ МЕДИЦЫНЫ И БИОТЕХНОЛОГИИ

ИМЕНИ К.С. СКРЯБИНА

РЕФЕРАТ

по физиологии

На тему:

«Физиология системы крови»

Выполняла

студентка 3го курса

ВБФ 1 группа

Литовченко Анастасия

2009